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Abstract: We put forward and demonstrate with model particles a smart laser-diffraction analysis
technique aimed at particle mixture identification. We retrieve information about the size, shape,
and ratio concentration of two-component heterogeneous model particle mixtures with an accuracy
above 92%. We verify the method by detecting arrays of randomly located model particles with
different shapes generated with a Digital Micromirror Device (DMD). In contrast to commonly-used
laser diffraction schemes—in which a large number of detectors are needed—our machine-learning-
assisted protocol makes use of a single far-field diffraction pattern contained within a small angle
(∼0.26◦) around the light propagation axis. Therefore, it does not need to analyze particles of the
array individually to obtain relevant information about the ensemble, it retrieves all information
from the diffraction pattern generated by the whole array of particles, which simplifies considerably
its implementation in comparison with alternative schemes. The method does not make use of any
physical model of scattering to help in the particle characterization, which usually adds computational
complexity to the identification process. Because of its reliability and ease of implementation, this
work paves the way towards the development of novel smart identification technologies for sample
classification and particle contamination monitoring in industrial manufacturing processes.

Keywords: particle characterization; laser diffraction; machine learning; neural networks

1. Introduction

Particle characterization techniques have long played a fundamental role in many
different branches of science and technology. In biology, they assist in schemes for the
detection of bacteria [1] and viruses [2]. They are important in the pharmaceutical [3,4],
food processing [5,6], and the semiconductor industries [7]. Particularly important are
applications aimed at environmental monitoring and protection [8,9]. Some potential
applications include the detection of microplastics in marine waters [10], and the charac-
terization of airborne particles, given that their size is strongly correlated with pulmonary
toxicity [11,12] leading to respiratory illnesses.

Remarkably, more than 75% of all materials processed in the industry are in partic-
ulate form. These particles may be contained in substances in any of the three known
phases (solid, liquid, or gaseous) and can be divided into three broad groups: natural,
industrially processed from natural products, and completely synthetic particles [13]. In
general, one can identify two important reasons for industries routinely employing particle
characterization [14]: better understanding of products and processes, and better control
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of product quality. While the former allows for the optimization of the manufacturing
processes, the latter can translate into a potentially important economic benefit.

During the past two decades, several light scattering technologies used for parti-
cle characterization have matured and even become a key part of industrial production
lines [15]. These techniques may be classified into three main categories: static light scatter-
ing (SLS), dynamic light scattering (DLS), and scattering tracking analysis (STA). In the first
class, the measured scattering signal results from the light-particle interaction at various
spatial locations, whereas in the second and third, the recorded signal results from the
monitoring of light-particle interaction as a function of time.

Different techniques aim, or are better suited, for particles in different size classes.
Particle dimension ranges from very small, such as viruses (20–100 nm) [16], to larger
ensembles such as bacteria colonies of 1–2 mm dimension, with a number of possible
shapes [1]. For instance, while dynamic light scattering techniques can resolve particles
deep in the submicron region [17], static methods work best in the range of hundreds of
µm to mm [18,19]. Here we aim at this regime of size particles, with the smaller particles
considered being tens of microns in size.

Static light scattering, also known as laser diffraction (LD) analysis has become the
most widely used technique for extracting information about the particle size distribution
of an unknown sample [20]. This technique is based both on Mie light scattering theory,
and on far-field Fraunhofer diffraction. In LD analysis, the light intensity vs scattering
angle is related to the dimensions of the particles participating in the scattering process,
with other variables, such as wavelength, kept constant. Thus, information about particle
size is extracted from the angular intensity variation of laser light scattered from a given
sample: larger particles scatter light at smaller angles, while smaller particles scatter at
wider angles [14]. It is worth pointing out that while for Fraunhofer diffraction the particle
size analysis is somewhat straightforward, the Mie scattering approach requires knowledge
of the real and imaginary parts of the sample’s refractive index [13].

Commercial LD instruments have been used extensively in the industry due to their
high precision and reliability. Important drawbacks include their limited portability and
their inability to fully discern among different particle shapes. In particular, given that LD
is based on the precise detection at different scattering angles, typical instruments require
in the region of 16 to 32 detectors positioned at different angles with respect to the main
optical axis (see, for instance, Figure 4 of Ref. [15]). Unfortunately, increasing the number of
detectors does not necessarily lead to a better resolution [18] and thus, finding the optimum
number and location of detectors for a particular application becomes a crucial task. Most
LD schemes are based upon the assumption that particles, although different in size, are
always spherical; this poses a problem if the goal is to identify samples containing particles
with different shapes [21,22].

Although it is well known that particle shape influences the properties and behavior
of substances, for example affecting material strength and deformation mechanisms [23]
as well as the compaction/flux of powders [24], it remains challenging to determine it
experimentally. Some studies have used LD for the development of sensors to obtain
particle shape information for online process control and monitoring, however, these have
only achieved limited success [25,26]. Many different measures have been suggested for the
characterization of particle shape, involving roundness and angularity (sharpness) [27,28].
More rigorously, extensions of the Mie theory for arbitrarily-shaped particles can be ap-
proached numerically; however, applying such numerical solutions to mixtures of many
particles would be computationally very costly [29,30].

Neural network (NN) algorithms have been applied for particle characterization al-
lowing for the estimation of relevant parameters such as particle size and concentration.
In addition, they have also been shown to outperform ill-conditioned inverse scattering
problems in Mie theory by reducing significantly the required computational time [31]. In
this sense, machine learning (ML) techniques are known to be powerful for pattern recogni-
tion in large data sets, providing reliable parameter estimation. The standard procedure is
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to train NNs with either experimental or synthetic data spanning the parameter range of
interest, and subsequently estimate the desired parameters by using measurements as input
to the trained NN [32]. The key point is that NNs make use of their self-learning capabilities
to enhance the performance of optical systems in terms of reliability and resolution without
the need to increase their complexity. ML techniques have been applied for particle shape
characterization by recognizing the morphology of particle aggregation, ref. [33] or by
defining the boundaries of each particle from direct imaging measurements [34]. Interest-
ingly, neural networks have been shown to significantly improve the detection of spatial
features in out-of-the-lab technologies such as mobile-phone-based microscopes [35]. These
features combined undoubtedly facilitate the deployment of machine-learning-assisted
methods in industrial settings.

In this work, we provide the first steps towards “smart” laser diffraction analysis
of heterogeneous mixtures [36]. This technique makes use of a trained artificial NN to
identify spatial features of heterogeneous mixtures of microscopic objects. Our analysis
relies on monitoring the far-field diffraction pattern produced by laser light impinging on
two-dimensional arrays of model particles which, for the sake of simplicity and generality,
are simulated with the help of a Digital Micromirror Device (DMD). We would like to point
out that, although these model particles are not real three-dimensional objects, they exhibit
certain advantages [37,38]. In particular, given their two-dimensional nature, they reason-
ably fulfill the theoretical pre-assumptions for Fraunhofer diffraction, and by excluding
other possible effects derived from real three-dimensional particles help focus our attention
on the advantages of using smart technologies, i.e., those based on pre-programmed rules
or patterns learned during a training stage, for laser diffraction analysis.

The technique hereby proposed, in which relevant sample information is reliably
extracted from a single and static far-field diffraction pattern, offers two main advantages
over typical LD devices. Firstly, it allows for efficient particle identification by detecting
the signal within a small angle (∼0.26◦) with respect to the light propagation axis, thus
effectively reducing the number of detectors needed for its implementation, as is also the
case in recent micro- and nano-particle identification proposals that make use of Machine
Learning (ML) algorithms [31,39–43].

Secondly, our technique permits the identification of particle shapes in two-component
heterogeneous mixtures resolving the shapes of the particles that make up the mixture, as op-
posed to currently available techniques in which only the particle size can be obtained [36,44].
In addition, this proposed technique allows for the determination of the predominance
(or balance) between particle geometries. These features might be relevant for monitoring
particle contamination in industrial manufacturing processes [45].

2. Experimental Methods
2.1. Setup and Data Acquisition

To generate a large set of different particle mixture configurations, we create objects
of different geometries and sizes using a DMD consisting of a 6.57 mm × 3.69 mm chip
containing a grid of square mirrors of 7.63µm per side. The mirrors can be selectively
rotated ±12◦ in an “on” or “off” configuration such that when illuminated, the DMD
reflects light selectively.

The DMD is illuminated with a 405 nm wavelength collimated beam of 2.46 mm
diameter. The beam size is set to be smaller than the DMD window to avoid diffraction
effects caused by the borders of the chip. Each object in the mixture corresponds to a
contiguous array of mirrors in the “on” configuration that reflects a part of the beam. The
objects are randomly positioned on the DMD plane assuring no overlap between particles.
Due to the periodicity of the mirror grid, a mesh of diffraction order beams is produced.
A single diffraction order is selected to be transmitted through a Fourier transform lens,
and the diffraction pattern is collected with a CCD camera, as shown in Figure 1. Note
that due to the dimensions of the beam, the model particle images, and the focal length
of the Fourier lens L5 (200 mm), the DMD diffraction orders are naturally separated with
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propagation, so that no additional spatial filtering is required to isolate a single diffraction
order. The collected diffraction patterns are stored as bitmaps, scaling the intensity values
monitored with the CCD camera to 8-bits, associating the maximum intensity (saturated
detector) to 255 gray-scale values.

405 nm
Laser

HWP

LP

M M

DMD

CCD

PM

L1

L2 L3

L4

L5

BS

P

Diffraction
Pattern

Object Plane

Figure 1. Experimental Setup. A 405 nm laser beam, spatially filtered with two lenses (L1 and L2) and
a pinhole (P), is expanded with a telescope system (L3 and L4) to illuminate a Digital Micromirror
Device (DMD). The power of the illumination beam can be controlled using a Half-wave Plate
(HWP) followed by a Linear Polarizer (LP). The light reflected by the DMD passes through a Fourier
transform lens (L5), and the diffraction pattern is collected by a CCD camera at the focal plane of
the Fourier lens L5. The power of the signal after L5 was measured using a beam splitter (BS) and a
power meter (PM).

We consider mixtures of microscopic particles. The aim is to retrieve information
such as their size, geometry (shape), and concentration. To demonstrate in principle the
effectiveness of the method, in this work we consider only three geometries, namely:
squares, triangles, and circles. However, our results seem to indicate that one can con-
sider two-dimensional arbitrarily shaped objects in more general scenarios, given that the
different shapes to be identified produce a spatial far-field pattern which is sufficiently
distinguishable. These mixtures are analyzed following the steps shown as a flowchart in
Figure 2a.

To demonstrate that we can successfully retrieve the sought-after information about
the microscopic objects, we carry out two different experiments. The first experiment
(Experiment #1) aims at recognizing sets of microscopic objects that have the same shape
but different characteristic lengths; in this case: 11, 15, 21, or 25 times the DMD mirror
length (7.63 µm). The total number of particles varies from one to five.

The second experiment (Experiment #2) considers mixtures containing two types (out
of the three available geometries) of microscopic objects. In this experiment, the size of
the particles is kept constant (15 micromirrors), while the total number of objects ranges
from 2 to 10. All possible combinations n1 + n2 = N are considered, where n1 and n2
are the number of sources belonging to geometries 1 and 2, respectively. The dataset for
each experiment is created by randomly assigning the position of the objects, avoiding any
overlap between them, and registering their corresponding far-field diffraction pattern.
One hundred diffraction patterns were considered for each category. Given the total
number of combinations of size, shape, and number of objects, Experiment #1 contains
6000 experimental diffraction patterns, while Experiment #2 includes 19,200 patterns.
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Figure 2. Machine-learning-assisted particle mixture identification. (a) Flowchart of the machine
learning algorithms used for extracting information from intensity-only measurements of the diffrac-
tion patterns. (b) Image down-sampling process. The intensity signal extracted from the CCD camera
is presented in false color for the sake of clarity of the presentation. (c) Flow diagram of the neural
networks used in each phase of the experiments described in the main text.

Due to the quadratic scaling of the illuminated area with the increase of the particles’
characteristic length, the intensity of the diffraction pattern increases accordingly. Thus, in
order to avoid saturation of the detector, and incomparable powers of the stored diffraction
patterns, the power of the initial illumination beam was selected according to the total
illuminated area; more precisely, the total number of pixels in the “on” configuration, which
varied from 66 pixels (corresponding to a triangle of 11 pixels per side) up to an almost fifty
times larger illuminated area of 3125 pixels (corresponding to five squares of 25 pixels per
side). Table 1 summarizes the power of the illuminating beam for each case.

Table 1. Beam power as a function of the illuminated area in the DMD.

Number of Pixels Power [µW]

≤500 200

501–1000 100

1001–1500 50

1501–3000 25

≥3001 15

Because the illumination beam has a Gaussian profile, the power reflected by the
DMD strongly depends on the distribution of the particles; the particles closer to the center
of the beam will reflect more intense light than particles far from the center. Tailored
illumination with uniform intensity profile such as top-hat beams would prevent this from
happening, however, this requires alternative beam shaping equipment. To take these
variations into account, we make sure that, in each case, the collected images had the same
mean total power. To do so, the exposure time of each measurement was selected such that
no pixel of the CCD camera recorded an intensity larger than 250 (gray-scale), being 255
the saturation value, additionally the integrated signal of all pixels yield the same value for
all measurements. A general description of the data collection methodology is summarized
in the pseudo-code shown in Algorithm 1.
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Algorithm 1: Pseudo-code of experimental data collection.

for Select Illumination beam power do
for Select geometry category do

for Select total number of particles N do
Compute total number of Pixels
Set initial exposure time
if Total number of pixels ∈ pixel interval then

for i = 1 : 100 do
Generate source plane with non-overlapping particles
Project source plane in the DMD
Collect diffraction pattern
Verify image saturation
while Image is underexposed or saturated do

end
Update exposure time
Collect diffraction pattern
Verify image saturation
Measure signal power
Save diffraction pattern

end
end

end
end

end

Examples of the collected diffraction pattern intensities experimentally measured
[IE(x)] are shown in Figure 3 and compared with the corresponding theoretical predictions
[IT(x)], generated using a far field FFT-based algorithm that describes the scattering process.
Here x = (x, y) designates the transverse coordinate on the measuring plane. To evaluate
the degree of similarity between experiment and theory, we make use of the overlap
parameter [46]

Ω =

[∫
I1/2
E (x)I1/2

T (x) dx
]2

[
∫

IE(x) dx][
∫

IT(x) dx]
, (1)

where Ω = 1 corresponds to a perfect overlap between the theoretical prediction and the
experimental measurement. Note that in all of the cases that we have evaluated, the overlap
parameter is Ω ≥ 0.9.

2.2. Neural Network Architecture and Processing

All the algorithms used in our protocol are based on multi-layer feed-forward networks [47].
Hidden layers feature neurons that perform operations on the data using synaptic weights
and a nonlinear activation function, the so-called sigmoid function. The output layer
comprises softmax neurons that provide a probability distribution over predicted output
classes [48,49]. To build accurate and reliable neural networks, a crucial step is to determine
an appropriate feature vector that may capture the information encoded in the diffraction
patterns. Figure 2b shows the image pre-processing method carried out to build the feature
vector. We first crop the diffraction pattern to a 400× 400 pixel image, retaining only the
central portion of the monochromatic high-resolution original images (1280× 1024 pixels,
normalized to 8 bits) obtained with a CCD camera (Thorlabs DCU224C). After this step,
to reduce the data dimensions, we perform a down-sampling process that averages small
clusters of 80 by 80 pixels, resulting in a 5-by-5 pixel image. It is worth mentioning that
we have tested our algorithms with a larger set of features (pixels) without observing
a significant efficiency improvement, as shown in Figure 4. The values of identification
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accuracy that correspond to each one of the feature matrix dimensions are: 78.41 ± 1.94,
94.12± 0.75, 94.24± 0.65, 94.48± 0.41, 94.45± 0.32, 94.55± 0.2, 94.6± 0.12 and 94.77 ± 0.1
(all values correspond to accuracy percentage). Finally, we rearrange the resulting inten-
sity distribution as a column vector, with the total measured intensity included as a 26th
element of the resulting feature vector V1, depicted by the red rectangle in Figure 2c.

Figure 3. Diffraction patterns measured in experiments. (a,d,g) show examples of the objects gener-
ated with the Digital Micromirror Device (DMD). (b,e,h) are the theoretically predicted diffraction
patterns created by the objects depicted in the leftmost column. (c,f,i) are the experimentally mea-
sured diffraction pattern. Note that the images are normalized, so that the integrated signal over the
detection area adds up to unity. In all cases, the overlap parameter Ω is found to be larger than 0.9.

3x3 5x5 12x12 25x25 50x50 100x100 200x200 400x400
Feature matrix dimension [pixels]

80
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90
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100
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Figure 4. Identification accuracy as a function of the feature matrix dimension. Error bars indicate
standard deviations.

Our neural networks undergo two stages, namely training, and testing. We train the
classification networks using the scaled conjugate gradient back-propagation algorithm [50],
while the performance is evaluated through the cross-entropy [51,52]. We devote 70%
of the dataset to training, 15% to validation, and 15% to testing, as is standard in ML
protocols [53,54]. In all cases, the training of the neural networks was carried out with
balanced data, that is, the training dataset contains the same number of observations for
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each one of the classes. It is worth mentioning that the testing data was excluded from the
training phase, thus providing an unbiased evaluation of the algorithm’s overall accuracy.
A limit of 1000 epochs was set for each network training stage. Both training and testing
stages were performed with MATLAB 2019a which runs on a computer with an Intel Core
i7-4710MQ CPU (@2.50 GHz) and 32 GB of RAM. After the training stage, our networks can
make predictions of the shape, size, and the number of microscopic objects in a given sam-
ple using as input the diffraction pattern and the total intensity, as shown in Figure 2c. In
what follows, we provide a thorough description of the steps followed in each experiment.

In Experiment #1, we implement three neural networks connected in series, each
one of them performing a specific prediction of the features of the initial field. The first
neural network identifies the shape of the objects. It is trained by using a concatenation of
the total intensity (signal power) and the down-sampled representation of the diffraction
pattern, i.e., the feature vector V1 [see Figure 2b]. The second network, identifying the
object size, makes use of the prediction of the first network to create the feature vector
V2 = V1 + geometry (shape), whereas the third network extracts the object number from the
feature vector V3 = V2 + size. Figure 2c summarizes the structure of the neural networks and
the predicted classes. The core feature-vector V1 is initially introduced in the network that
identifies the shape. Then, its output acts as input for the second network, in conjunction
with the core feature vector. Once the object size has been determined, the third neural
network predicts the number of objects using as input the core feature-vector, as well as the
outputs of the first and second networks.

In Experiment #2, we follow a similar strategy. We first implement a neural network
that determines the combined-geometry (shape) class—i.e., the two shapes of the objects
which make up the mixture—by using the feature vector, comprising the down-sampled
diffraction pattern and the total measured intensity. With the geometry-class identified and
the core feature-vector, we then determine the total number of objects. Finally, by making
use of the core feature-vector, as well as the outputs of the first and second networks, we
predict the dominant shape. Note that the last network has been divided into two cases:
odd and even number of objects. This is due to the fact that when the number of objects is
even, we need to define three output classes depending on the concentration ratio, namely
(1) larger number of the first geometry, (2) larger number of the second geometry, (3) equal
number of model particles of both geometries. For an odd number of objects, there are only
two classes. Also note that the class labeled as Geometry-1 (Geometry-2) in Figure 2 refers
to the first (second) object-shape in each of classes 1, 2, and 3. It is important to note that
in both experiments, all of the data which serves as input to the neural network (both for
training and for evaluation), is obtained experimentally through far-field diffraction.

3. Results and Discussion

We have performed a blind test of our neural networks on the remaining 15% of the
collected data. We obtain an overall >90% identification accuracy in every stage of the
experiments. Table 2 summarizes the results of each experiment (see Figure 5 for details
on the network success rate for each task), including the overall accuracy, the number of
hidden layers, and the number of neurons in each layer.

Table 2. Overall accuracy, number of hidden layers, and number of neurons in each layer for the
neural networks implemented in the described experiments.

Experiment Neural Network Accuracy Number of Hidden Layers Number of Neurons by Layer

1
Geometry 99% 1 5
Object Size 99% 1 5
Object Number 93% 2 Layer 1 = 20; Layer 2 = 5

2

Geometry 94% 2 Layer 1 = 30; Layer 2 = 20
Object Number 92% 2 Layer 1 = 80; Layer 2 = 50
Dominant geometry (even) 95% 2 Layer 1 = 30; Layer 2 = 20
Dominant geometry (odd) 98% 2 Layer 1 = 30; Layer 2 = 20
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Figure 5. Confusion matrices that summarize the performance of machine-learning algorithms for
particle mixture identification. The top row shows the confusion matrices containing information
about the correct and incorrect predictions for (a) geometry (shape), (b) model particle characteristic
size, and (c) number of objects of the Experiment #1. The bottom row presents the confusion matrices
for (d) geometry (shape), (e) number of model particles, and (f,g) dominant geometry (shape) of
the Experiment #2. (f,g) matrices correspond to the case in which the number of objects is even and
odd, respectively. In all cases, the diagonal elements of the matrices represent successful recognition,
i.e., true-positives and true-negatives, whereas off-diagonal elements represent failed attempts,
false-negatives, and false-positives.

In Experiment #1, featuring collections of one single type (shape) of particle, the first
NN can identify the shape of the model particles with a 99% accuracy using a single hidden
layer with 5 neurons. The second NN for the determination of particle size showed the
same performance, with the same architecture. For the case of the particle number, the
architecture of the NN involves two hidden layers with 20 and 5 neurons, respectively,
resulting in a 93% identification accuracy.

We remark that in experiment #1 which involves collections of a single type of particle,
each one randomly positioned, we can obtain information about particle shape, size, and
total number from inputting a single diffraction pattern to our three cascaded NNs, in
contrast to other schemes which analyze each particle on a one-by-one basis [25,26].

For experiment #2, featuring heterogeneous mixtures of two types (shapes) of particles,
our NN uses two hidden layers. The shape of the particles was retrieved with 94% accuracy
using 30 and 20 neurons, respectively; while for the total number of model particles, 80 and
50 neurons were needed for an identification accuracy of 92%. Finally, two layers with 30
and 20 neurons were required to determine the dominant shape obtaining 95% accuracy
for the even total number of particles and 98% for the odd number of particles.

We measured the execution time in both training and test stages to quantify the
computational cost in terms of the processing time. Table 3 shows a comparison of the
execution time for all the proposed neural networks. Note that, in general, while our
algorithms require less than 30 s to be trained, the test time is significantly less than that of
the training, around a few tens of milliseconds.

It is worth mentioning that although the data preparation and processing can be
considerably time-consuming, once the training phase has been completed, our neural
network can process newly-acquired data (prepared in the same format as used for training)
in timescales of milliseconds.
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Table 3. Computation time for test and training of the neural networks used in each experiment.

Experiment Neural Network Training [s] Test [s]

1
Geometry 2.308× 10−1 ± 2.7× 10−3 7.1× 10−3 ± 6.7× 10−7

Object Size 2.491× 10−1 ± 4.7× 10−3 7× 10−3 ± 5.2× 10−7

Object Number 3.905× 10−1 ± 9.9× 10−3 7.2× 10−3 ± 2× 10−7

2

Geometry 4.7212 ± 7.471× 10−1 1.2× 10−2 ± 1.4× 10−6

Object Number 1.57444× 101 ± 4.6636 1.82× 10−2 ± 2.4× 10−6

Dominant geometry (even) 1.045 ± 6.1× 10−2 2.7× 10−5 ± 9.9× 10−10

Dominant geometry (odd) 9.513× 101 ± 6.5× 10−2 2.1× 10−5 ± 2.7× 10−9

4. Conclusions

We have demonstrated an optical technique for particle mixture identification, with
potential applications in research and industry, based on machine-learning-assisted laser
diffraction analysis. The technique proposed facilitates a fast and accurate identification of
the particle’s shape, size, and total number in the case of collections of a single particle type
(shape). Likewise, it leads to fast and accurate identification of the geometry of constituent
particles, particle size, and dominant geometry in the case of binary non-heterogeneous mix-
tures. We have verified that the method works detecting arrays of randomly located model
particles generated with the help of a DMD. It is worth pointing out that machine learning
and deep learning algorithms have been used to improve optical microscopy [35,55–57].
Interestingly, by using neural networks as classifiers or feature extractors, in some cases
trained with synthetic data and tested in real measurements, these types of techniques have
shown to be effective for impurity recognition in semiconductors [58,59].

In our work, by making use of a digital micromirror device, we have simulated mix-
tures of particles of different sizes and geometries with a different total number of model
particles. By analyzing the resulting far-field diffraction pattern, our neural network algo-
rithm can extract the spatial features of the mixtures. Relying on a total of 24,900 diffraction
patterns and a 70/15/15 ratio for training, validation, and testing data, respectively, the
identification performance remained above 90%. Because of its reliability and ease of
implementation, our technique may be of great importance for different scientific and tech-
nological disciplines, as it establishes a new route towards the development of novel smart
identification devices for sample classification and particle contamination monitoring.
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