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Abstract: We experimentally observe the stimulated analogue of Hawking radiation produced
in a photonic-crystal fiber, with a pulsed pump and a continuous-wave probe. In particular, we
propose and demonstrate an innovative method to boost the efficiency and probe the coherence
characteristics of the analogue Hawking effect relying on a double pump pulse with a controlled
temporal delay. We show that the emitted analogue Hawking radiation corresponds to the
coherently-added, interfering Hawking signals resulting from the probe interacting with each
pump pulse. We introduce a simple effective Michelson interference model, and demonstrate
excellent agreement between our experimental data and the predictions derived from this model.
Importantly, while naively increasing the pump power in an attempt to boost the Hawking-
radiation generation efficiency results in the distortion of the output signal, we show that at the
maxima of the observed Hawking-signal interference pattern, the signal can be increased by a
factor of >3 (up to 4 under ideal experimental conditions). This approach could be extended to
the use of sequences of m pulses, resulting in a Hawking-signal enhancement of m2.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

A new paradigm in optics involves fields that act themselves as optical elements to control
light. Indeed, new phenomena occurring in optical fibers have been explored based on nonlinear
interactions between solitons and other optical waves designed to reflect, trap, and control light
by light. These systems include temporal interfaces and waveguides [1–3], solitonic cages and
cavities [4,5], pulse trapping [6], emulation of Fabry-Perot and Bragg resonators [7], control
of solitons using dispersive waves [8–10], manipulation of dark solitons [11], generation of
frequencies via four-wave mixing [12], mixing of solitons and dispersive waves [13], as well as
the emulation of event horizons [14,15].

In this paper, we concentrate on the so-called analogue Hawking effect, one of the known
phenomena originating from the nonlinear interaction of light in a dielectric with third-order
susceptibility. This effect represents a stimulated version of the optical analogue of the
astrophysical Hawking radiation produced by the quantum vacuum in the vicinity of the event
horizon of a black hole [16,17]. Initial experimental work in this direction involved interacting a
continuous-wave (CW) probe with a pulsed pump [14,18]. The efficiency in such systems tends
to be low since the fraction of the probe energy temporally overlapped with the pulsed pump
is extremely small. In this context, recent work has exploited the interaction of a pulsed probe
with a pulsed pump so as to drastically increase the efficiency of the nonlinear effects [15,19].
However, the experimental configurations with a CW probe are more straightforward than with a
pulsed probe considering that no temporal synchronization is required.
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While the use of an all-pulsed experimental scheme certainly has been successful [15], the much
increased resulting experimental complexity motivated our search for ways to boost the efficiency
in the technically simpler case of a CW probe. In this paper, we propose and demonstrate an
innovative method to (1) boost the efficiency and (2) probe the coherence characteristics of
the analogue Hawking effect based on a CW probe, as follows. As a first step, we set up our
own version of a previous experiment to observe the frequency-shifting of a CW probe due to
its interaction with a pulsed pump through the Kerr effect, which corresponds to the expected
Hawking radiation analogue. As a second step, we propose and implement a novel experiment to
demonstrate the use of a double pump pulse which leads to an interference effect in the Hawking
signal, and translates into a four-fold increase in the conversion efficiency at interference maxima.
Interestingly, this approach could be generalized to the use of sequences of more than two pump
pulses for an even greater increase in the conversion efficiency, with an enhancement factor
which scales as the square of the number of pulses. Furthermore, this approach shows that the
emitted radiation is coherent, since otherwise interference would not occur between two separate
sources, as we in fact demonstrate. Such coherence represents an expected property of the true
(astrophysical) Hawking radiation seeded by the quantum vacuum. So as to fully understand the
measured spectra, we present a theoretical model based on an effective Michelson interferometer
in which, instead of relying on physical mirrors, the probe is reflected from light itself at each
of the two pump pulses. We believe that this work provides an interesting new tool for further
experimental studies of the analogue Hawking effect.

2. Nonlinear optical model for the analogue Hawking effect

The first necessary ingredient in our experiment is an intense ultra-short pump pulse traveling in
a third-order dielectric medium. Due to the optical Kerr effect, the high-intensity electric field
leads to a slight increase in the refractive index of the medium. In our case, the pulse propagates
through an optical fiber so that the original refractive index n0 increases by δn ∝ I(z, t), where I
is the pulse intensity. This effect can be understood in terms of an effective moving medium.

The second ingredient is a probe wave to interact with the effective moving medium. For
this purpose, the probe should have a very similar group velocity to the pump pulse, so that
the change of refractive index caused by the pump pulse is sufficient to reverse the propagation
direction of the probe relative to the pump: this is the regime known as extreme nonlinear optics
(XNLO) [20–22]. Particularly, in our experimental work we focus on a case in which the probe is
initially faster and thus reaches the pump pulse, slowing down in the process until it matches the
pump velocity. This represents an unstable state for the probe: it can either traverse the pump
while retaining its original frequency or continue to slow down and blueshift to a new frequency.
The blueshifted signal traveling more slowly than the pump constitutes the optical analogue of
the Hawking radiation [14,15]. The conversion efficiency can be calculated as the ratio between
the intensities of the blueshifted Hawking signal and the incoming probe.

Our nonlinear medium should fulfill two conditions: have a sufficiently large nonlinearity
and satisfy the mentioned quasi group-velocity matching between two different frequencies (the
pump and the probe) [23]. The fulfilment of these conditions is possible in highly-nonlinear
fibers, particularly in photonic-crystal fibers (PCFs). These fibers exhibit a region of anomalous
dispersion such that the group index presents both a local minimum and a maximum, instead of
decreasing monotonically with wavelength as is common for fused silica optical fibers [24].

A simple and effective means to study wave propagation in a single-mode fiber is the nonlinear
Schrödinger equation (NLSE) [25], which is the approach we use to model the analogue Hawking
effect. Note that while the derivation of the NLSE relies on several approximations and has been
surpassed in numerical solutions by other equations requiring fewer approximations, it is still
widely used because it provides valuable physical intuition [18,26].
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In our analysis, we use the so-called pump-probe approximation, in which the pump is
considered static, and the main focus is to analyze its effect on the probe [27]. This approximation
is valid if the pump is much more intense than the probe, as is our case. By transforming the
laboratory coordinates to a frame of reference co-moving with the pump, the NLSE transforms
into a standard Schrödinger equation for the probe, with an effective potential proportional to
the intensity of the pump. The Hawking signal produced by the interaction in the pump-probe
regime is more easily studied in the co-moving pulse frame [14]. This theoretical approach has
resulted in excellent agreement with the experiment in terms of the frequency and efficiency
of the resulting Hawking signal [18]. The frequency of the resulting analogue Hawking can
be calculated through the conservation of the co-moving probe frequency upon its conversion
process [28].

In the co-moving frame, the probe is slowed down by the pump until it comes to a complete
standstill at a certain point (referred to as the white-hole horizon) defined by its intensity, at
which it can be either transmitted or reflected, in both cases maintaining its co-moving frequency
(Fig. 1):

ω′(ω) = γ

(︃
1 −

n(ω)u
c

)︃
ω, (1)

where u is the pump group velocity, γ is the Lorentz factor of u, and ω is the frequency in the
laboratory frame.

Fig. 1. In the laboratory frame, an intense pump pulse (red) travels along a fiber inducing
a refractive index increment due to the Kerr effect. A continuous wave probe (orange)
approaches the pump pulse and is slowed down and frequency-shifted by the pulse. The
resulting signal constitutes the analogue Hawking radiation (yellow). In the co-moving
frame, the CW approaches the stationary pump and is reflected at a certain intensity, the
analogue of a white-hole horizon (white circle). The co-moving frequency is conserved in
this process.

Due to the dispersive nature of the optical analogues, the horizon is best defined by its frequency
and not by a spatial location, as in astrophysics. The horizon frequency has the same group
velocity as the pump, i.e., dω′/dω = 0. The factor dω′/dω defines the velocity in the co-moving
frame: faster [slower] waves have a positive [negative] derivative. The dispersion relation of our
fiber is presented in Fig. 2 in the form of the co-moving frequency ω′(ω). The probe frequency
ωp (orange) is slightly lower than the horizon frequency ωh (black) and upon its interaction with
the pump pulse, it can be shifted to the Hawking frequency ωHR (yellow) which is higher than
the horizon frequency.
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Fig. 2. The dispersion relation of the fiber is represented by the co-moving frequency as
a function of the laboratory frequency ω′(ω), for a wide spectral window (a) and for the
specific region of interest (b). Note that the resulting Hawking radiation is blueshifted from
the incoming probe (as this is a white-hole horizon).

3. Measuring the analogue Hawking signal

Detailed knowledge of the PCF dispersion relation is crucial for the design and interpretation of
our experiment. We obtain the fiber dispersion relation through the following procedure: (1) we
map the transverse fiber geometry through a scanning electron microscope, (2) we simulate a
catalog of thousands of dispersion relations stemming from similar geometries using the FemSIM
Mode Solver, (3) in a related experiment (not discussed here, see Ref. [29] for details), we
spectrally resolve the photon pairs generated by the spontaneous four-wave mixing process,
and (4) we find the dispersion relation that best fits our measurements. Having determined the
dispersion relation, we predict the Hawking frequency for a given probe frequency ωp by solving
ω′(ω) = ω′(ωp) for ω (Fig. 2).

Figure 3 shows our experimental setup. The beam from a Ti:sapphire pulsed laser with a
temporal duration of around 110 fs, tunable in the range 780-810 nm, and with a repetition
rate of 83 MHz, is sent to a power and delay controller, with the purpose of preparing double
pulses to constitute the pump in the analogue Hawking process. A half-wave plate (HWP1)
and polarizer (POL1) are used to control the pump power, which is subsequently split by a
polarized beam-splitter (PBS), with the power in each arm controlled by a second half-wave plate
(HWP2) preceding the PBS. Both the reflected, vertically-polarized arm and the transmitted,
horizontally-polarized arm include a quarter-wave plate (QWP1, QWP2) followed by a mirror
such that the polarization is reversed on the return trip to the PBS. This ensures that all light
exits the PBS through its fourth port, thus forming a Michelson interferometer. Mounting one
of the interferometer end-mirrors on a computer-controlled linear motor enables us to produce
two-pulse sequences with a controllable temporal delay. Note that one of the two arms may be
blocked so as to obtain single pulses instead of pulse pairs when needed. A second polarizer at
the interferometer output is set to transmit the 45◦ polarization, ensuring that the two transmitted
pulses are co-polarized (although with a power reduction by a factor of 2). A third half-wave
plate (HWP3) is used to align the polarization of the pump pulse pair to the desired axis of the
optical fiber to produce the Hawking effect.

A dichroic mirror (DM1; designed to transmit wavelengths λ>900 nm, while reflecting
other wavelengths) allows us to combine into a single spatial mode the pump (in the form of a
two-pulse sequence) with the probe, formed by the beam from a CW laser. Specifically, we use a
narrowband, fiber-output CW laser, tunable between 1533 to 1633 nm (Keysight B1949A), with
its beam transmitted through a polarizer (POL3) to ensure that the probe polarization remains
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Fig. 3. Experimental setup. For clarity, we divide it into three sections: delay and power
control for the Ti:sapphire pulsed laser (light blue area), polarization control for the CW
long-infrared laser (pink), and detection (purple). The MMF1 leads to a monochromator
fitted with an InGaAs camera (Andor Idus) at its output, while the MMF2 leads to a compact
spectrometer (Ocean Optics USB-4000). The movable mirror is initially blocked to measure
the frequency shift with a single pulse. The two insets show the cross section of the used
PCF and the pump spectra for a non-zero temporal delay.

stable, followed by a half-wave plate (HWP4) used to align the probe polarization to the desired
axis of the optical fiber.

The combined pump-probe mode is coupled with the help of an aspheric lens (AL1) into
a 1 m length of photonic-crystal fiber (NKTPhotonics NL-PM-750). Light emanating from
the fiber is collimated using a second aspheric lens (AL2). A second dichroic mirror (DM2;
designed to transmit wavelengths λ>925 nm, while reflecting other wavelengths) thus defines
an IR (transmitted) arm containing the probe, along with the Hawking signal, and a visible
(reflected) arm containing the pump pulse pair. Light in the IR detection arm is transmitted
through a filter assembly (SF1) composed of a longpass filter (designed to transmit wavelengths
λ>980 nm), followed by a 1600 ± 6 nm bandpass filter. Detection on this arm is accomplished
by a grating-based monochromator (Andor SR-500i), fitted with a linear InGaAs CCD detection
array (iDus InGaAs 1.7 DU490A) at its output. Light in the visible detection arm is transmitted
through a bandpass filter (SF2) centered at 795 nm with a 150 nm bandwidth. Detection in this
arm is accomplished by a compact grating-based spectrometer (Ocean Optics USB-4000).

As a first experimental test, we measure the Hawking radiation produced by a single pump
pulse; for this purpose we block the translatable-mirror Michelson arm. We carry out the
experiment aligning both the pump and probe first to the slow axis and then to the fast axis of
the PCF. We use a pump at 791 nm with a power of 0.95 mW (measured at the fiber exit), with
the corresponding horizon frequency at 1610.8 nm. We couple ∼150 µW of probe power to the
fiber and measure the frequency shift for both fiber axes. The results are shown in Fig. 4(a),
where the solid lines represent the theoretical predictions and the points the experimental data.
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In Fig. 4(b), the points represent the calculated conversion efficiency from the measurements
(ratio between the Hawking signal to the coupled infrared signal), the dashed lines are Gaussian
fits, and the solid lines are obtained from the theoretical model in Ref. [18]. The discrepancy
between experimental and theoretical efficiency values can be attributed to various experimental
imperfections. Note that in our ensuing experiments we use the slow axis because of the larger
efficiencies attainable in comparison to the fast axis.

Fig. 4. Wavelength (a) and efficiency (b) of the measured Hawking signal for a single pump
pulse for both principal axes of the PCF using a pump at 791 nm with 0.95 mW power.
The points represent our measurements while the solid lines represent theory curves. Gray
regions indicate spectral areas that cannot be observed experimentally (see text). Dashed
lines in (b) correspond to a Gaussian fit of the data points.

The main challenge that we face when using a CW probe is the low resulting analogue Hawking
efficiency. A simple strategy to boost the Hawking signal is to increase the pump power. However,
this quickly results in a complete deformation of the Hawking signal, as a consequence of other
nonlinear effects occurring during the pump propagation in the fiber, such as soliton fission,
Raman effect, and supercontinuum generation [30]. So as to avoid these complications, we
propose and demonstrate a novel strategy to boost the Hawking signal based on the use of a pump
in the form of a pulse pair with a controlled temporal delay.

4. Boosting the Hawking signal through interference

The two arms in the Michelson interferometer allow us to produce a pump pulse pair with a
controlled temporal delay, exhibiting a spectrum with oscillations as shown in the inset in Fig. 3.
In our experiments we align both the visible pump and the IR probe to the slow axis of the fiber.
As a starting point, we set the position of the translatable mirror 1 mm away from the zero-delay
setting (corresponding to a delay of 6.6 ps), and proceed to take data of the IR spectrum with the
help of the monochromator, for both pump configurations of interest: single- and double-pulse.
The experimental results are shown in Fig. 5(a), which displays the Hawking-signal spectrum
resulting from a single-pulse pump (green curve), and from a double-pulse pump (black curve)
with a delay of 6.6 ps. It becomes clear that whereas the single-pulse case leads to a Hawking
signal in the form of a single spectral peak (with a width of ∼ 5 nm), the double-pulse case leads
to a spectrum which includes an interference pattern. Importantly, the interference pattern yields
intensity maxima that are higher than the single-pulse signal by a factor >3 (note that, as has
been mentioned, the calculations show that a factor of 4 is possible under ideal conditions). In
Fig. 5(b) we show the wavelength λHR at which the maximum intensity occurs in the Hawking
signal for the single- and double-pulse cases (calculated from Gaussian fits of the spectrum,
in the single-pulse case, and of the envelope of the spectrum, in the double-pulse case). The
fact that λHR is essentially the same for the single- and double-pulse cases, indicates that the
interference-mediated enhancement in the Hawking signal is obtained without the appearance of
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additional nonlinear effects, as can occur by simply increasing the pump power in an attempt to
boost the Hawking signal.

Fig. 5. Measured analogue Hawking radiation signal: Example spectra for a 1623.5 nm
probe in the single- and double-pulse pump cases (a), probe wavelength dependence (b) and
efficiency (c) of the Hawking signal in the single-pulse (green) and double-pulse (black)
cases, using a 796.5 nm at 0.95 mW pump and a temporal delay of 6.6 ps. The green line in
(c) represents a Gaussian fit of the single-pulse data-points, and the black line corresponds
to the ideal enhancement of this signal by a factor of 4.

Fig. 6. The CW probe interacts with the two pump pulses separated by a delay ∆t. In the
co-moving frame, the Hawking signals produced at the two pulses can be regarded as probe
reflections from the pump pulses. This leads to an effective Michelson interference model in
which the two interferometer arms correspond to the two probe reflections.

We compute the Hawking efficiency for each data point in Fig. 5(b) for both in the single- and
double-pulse cases. The results are plotted in Fig. 5(c). Note that while the gray band on the left
indicates that no data is displayed because it lies outside of the spectral transmission window of
the bandpass filter in SPF1, and the gray band on the right indicates that no data is displayed
because the probe and Hawking signals become too close to each other. The green curve shows a
Gaussian fit of the single-pulse pump conversion efficiency (green points), and the black curve
represents the ideal pulse-pair conversion efficiency resulting from multiplying the single-pulse
values by a factor of 4. Note that, although the two-pulse data points (black) fall short of the
theoretical four-fold enhancement, they do show a remarkable enhancement.
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5. Reinterpreting the Hawking signal as Michelson interference

The condition for the analogue Hawking effect to occur is that the probe frequency is close
enough to the horizon frequency to allow for the Kerr effect of the pump pulse to bring it to a
halt it in the co-moving frame. The expected Hawking frequency can be calculated by matching
the probe and Hawking frequencies in the co-moving frame

ω′
HR = ω

′
p, (2)

which in turn leads to the following relationship between the probe and the Hawking group
velocities v′p and v′HR, in the co-moving frame

v′HR ≈ −v′p. (3)

Thus, remarkably, in the co-moving frame the Hawking signal may be regarded as the reflection
of the probe from the pump pulse. Because in our case the pump is in the form of a sequence
of two pulses, each pump pulse may independently result in a Hawking signal, with the overall
Hawking signal then given by the coherent addition of the two signals (Fig. 6). This behavior
may be understood in terms of an effective Michelson interferometer for the analogue Hawking
radiation produced with each of the two interferometer arms corresponding to the Hawking
signals produced by the probe interacting with each of the two pump pulses. Note that the
temporal delay between the two interferometer arms may be controlled through the pump-pulse
delay. It is important to note that this effective Michelson interferometer acting on the analogue
Hawking radiation and defined by light is distinct from the Michelson interferometer acting on
the pump pulses to yield the pulse pair.

In order to test this effective-Michelson interpretation, let us write a simple model for the
overall Hawking signal, involving the coherent addition of two independent Hawking signals,
each described by a Gaussian temporal profile, as follows

E(t) ∝ exp

[︄
−

(︃
t
σt

)︃2
+ iωHRt

]︄
+ exp

[︄
−

(︃
t − ∆t
σt

)︃2
+ iωHR(t − ∆t) + iωp∆t

]︄
. (4)

In Eq. (4), σt is the temporal duration of each of the two Gaussian-shaped Hawking signals, ∆t
is the pump-pulse delay, ωHR is the Hawking frequency, and ωp is the probe frequency. Note
in Fig. 6 that the phase difference between the two effective Michelson arms includes: (1) the
phase ωp∆t accumulated by the portion of the probe transmitted by the first pulse that reaches the
second pulse, and (2) the phase ωHR∆t accumulated by the Hawking radiation produced by the
second pulse that propagates back to the first pulse.

The spectral intensity I(ω;∆t) can then be calculated as |Ẽ(ω)|2, where Ẽ(ω) represents the
Fourier transform of E(t), obtaining

I(ω;∆t) ∝ exp
[︃
−
σ2

t
2
(ω − ωHR)

2
]︃ {︁

1 + cos[∆t(ω − ωp)]
}︁

. (5)

In our experiment we record the spectrum of the Hawking signal for 400 equally-spaced delay
configurations, ranging from −1 mm (or −6.6 ps) to 1 mm (or 6.6 ps). We set the probe to 1624
nm, with a power of 150 µW, while the pump is centered at 794 nm with a power of 1.52 mW
(measured at the fiber exit, which is distributed equally among the two interferometer arms),
resulting in a Hawking frequency of 1598 nm.

The resulting experimental data is shown in Fig. 7(a), and the corresponding plot of I(ω;∆t)
according to the model in Eq. (5) is shown in panel (d). It may be seen that (apart from the region
near ∆t = 0) there is an excellent agreement between the experimental and modelled behaviors. In
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Fig. 7. Interference spectra of analogue Hawking radiation for a range of temporal delay
configurations (a,d). Fourier transform of interference spectra at each temporal delay value
(b,e). Fourier transform of the Hawking-signal for each frequency ω (the reference frequency
ωR variable is conjugate to ∆t) (c,f). Note that while the top row corresponds to experimental
data [direct in (a) and processed in (b) and (c)], the bottom row corresponds to our model.

plotting I(ω;∆t) we have used as parameters the known probe ωp and Hawking ωHR frequencies.
In addition, from a Gaussian fit of the pump spectrum (in the single pulse configuration) we can
obtain the spectral width

√
2/σt, from which the temporal width is calculated.

As a second comparison exercise, we also show the result of Fourier transforming the spectrum
at each delay value ∆t, yielding the auto-correlation function of the emitted Hawking radiation (in
accordance with the Wiener-Khintchine theorem [31]). When displaying the result of applying
such a transformation to the experimental data at all delay values, one obtains a two dimensional
function of two temporal variables: τ that corresponds to the Fourier conjugate variable to ω,
and the pump-pulse temporal delay ∆t, as shown in Fig. 7(b). Applying the same transformation
to the modelled spectral intensity I(ω;∆t) we obtain the result shown in panel (c). Apart from
the fact that there is clearly an excellent agreement between (b) and (e), it is also noteworthy that
the ± unit slope of the two diagonal stripes in panel (b) indicates that the pump-pulse delay acts
as expected.

As a third comparison exercise, we show the result of Fourier transforming the experimental
data for each constant Hawking frequency ω, thus obtaining a plot with a relative frequency
variable ωR (Fourier conjugate variable to ∆t) in the horizontal axis and ω in the vertical axis.
While in Fig. 7(c) we show the effect of applying such a Fourier transform to the experimental
data in (a), in (f) we show the effect of applying it the modelled behavior in (d). In both cases,
we obtain a central vertical stripe surrounded by two diagonal stripes which approach each other
for lower frequencies ω. Additionally, as a useful self-consistency test, if one extrapolates the
two diagonal stripes, one can check that they meet at ω = ωp, as the model predicts.

Considering the excellent agreement between the experimental and modelled behaviors in each
of the three columns of Fig. 7, we conclude that the signal produced in the experiment indeed
corresponds to the coherently-added, interfering Hawking signals, which can be regarded as
probe reflections from the two pump pulses. Our interferometric approach clearly shows that the
emitted radiation is coherent, since otherwise interference would not occur between two separate
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sources, as we in fact demonstrate. Our experiment represents the first experimental verification
of this coherence property for stimulated Hawking radiation in the optical context. This property
is also expected for the true (astrophysical) Hawking radiation seeded by the quantum vacuum.

Note that the discrepancy between the experiment and the model [see Fig. 7(a) and (d)] around
zero delay (∆t = 0) is related to the fact that in this region the two pump pulses overlap yielding a
single peak with twice the intensity, which produces undesired higher-order nonlinear effects
as it propagates through the fiber, region marked as NL in panel (a). Indeed, it was mentioned
above that naively increasing the pump power leads to distortion of the Hawking signal. Note
also that because our fiber is not long enough to allow multiple reflections of the Hawking signal,
as indicated by our calculations inspired by Ref. [4] (not shown here), the Michelson interference
model used here is more appropriate than one based on Fabry-Perot interference.

6. Conclusions

We report an experiment based on a photonic-crystal fiber in which a continuous wave optical
signal interacts with a pulsed pump, generating a stimulated analogue Hawking signal, blueshifted
from the white-hole analogue of the probe. Knowledge of the fiber dispersion obtained from an
independent characterization of the fiber through spontaneous four-wave mixing, allows us to
predict the wavelength of the Hawking signal leading to excellent agreement with the experiment.

We discuss that the observed Hawking signal may be regarded (in a frame of reference
co-moving with the pump) as the reflection of the probe from the pump pulse. In this paper,
we introduce the use of a double pump pulse, with a controlled temporal delay, and show that
the Hawking signal produced then corresponds to the coherent addition of the independent
signals from the two pump pulses, as evidenced by the interference pattern observed in the
outgoing Hawking spectrum. We have thus verified for the first time this coherence property in
the stimulated optical context.

From a purely optical perspective, the implementation of a Michelson interferometer defined
by light pulses in a dielectric rather than by physical mirrors is novel. This phenomenon is
correctly explained by our model given by Eqs. (4) and 5 in the frame comoving with the pump
pulses. Our work expands the existing catalogue of experiments that control light-by-light and,
to the best of our knowledge, is the first interferometer defined by light. This technique could be
used to enhance the efficiency and visibility of different nonlinear effects—not only analogue
Hawking radiation—while controlling unwanted signals.

Importantly, while naively increasing the pump power in an attempt to boost the analogue
Hawking generation efficiency leads to distortion of the signal produced, we show that at the
interference maxima, the Hawking signal is boosted by a factor >3 (which can be as high as
4 under ideal conditions). We introduce a simple model of the analogue Hawking radiation
produced by an effective Michelson interferometer, and show that there is an excellent agreement
between our experimentally-obtained Hawking spectra for a range of temporal delay values and
the predictions derived from this model.

We point out that our pulse pair approach could be generalized to sequences of m pulses, which
would result, importantly, in an m2 enhancement in the Hawking signal. This enhancement
could help in the eventual detection of the spontaneous version of the Hawking radiation optical
analogue, where no probe is used and the quantum vacuum seeds the effect. We believe that our
current work on the one hand will facilitate future research on optical analogues of Hawking
radiation, and on the other hand may present new avenues for purely optical experiments on the
control of light by light.
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