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Third-order parametric down-conversion: A stimulated approach
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We study the process of seeded or stimulated third-order parametric down-conversion as an extension of
our previous work on spontaneous parametric down-conversion (TOSPDC). We present general expressions
for the spectra and throughputs expected for the cases where the seed field or fields overlap either only one
or two of the TOSPDC modes and allow for both pump and seed to be either monochromatic or pulsed. We
present a numerical study for a particular source design, showing that doubly overlapped seeding can lead to
a considerably greater generated flux as compared with singly overlapped seeding. We, furthermore, show that
doubly overlapped seeding permits stimulated emission tomography for the reconstruction of the three-photon
TOSPDC joint spectral intensity. We hope that our paper will guide future experimental efforts based on the

process of third-order parametric down-conversion.
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I. INTRODUCTION

The promise of quantum-enabled technologies, which can
outperform their counterparts based on classical physics, has
motivated a number of exciting lines of research [1-6]. Al-
though a definitive technology for the implementation of all
quantum information science (QIS) tasks does not exist, it is,
in general, believed that photons are well suited for some of
these tasks [7]. Such photonics-based QIS leads to the need
for sources of single photons [8] and of multiple photons in
quantum-entangled states [5,9]. In this paper, we present a
study of seeded third-order parametric down-conversion as
a route towards the characterization and utilization of three-
photon states.

Nowadays, the use of nonlinear spontaneous parametric
processes for the generation of entangled photon pairs and
heralded single photons has become standard [10—15]. How-
ever, the generation of heralded photon pairs that requires
the availability of photon-triplet sources, remains challenging.
Although cascaded sources of photon triplets, i.e., relying
on an initial photon-pair generation stage with one of the
generated modes later acting as a pump for a second photon-
pair generation stage, have been demonstrated [16-23], the
development of genuine photon-triplet sources in which the
three photons derive from a single quantum event is an ongo-
ing research topic [21].

One possible avenue towards the above goal is the use
of the process of third-order spontaneous parametric down-
conversion (TOSPDC) in which a pump photon is annihilated

“fadomin @cicese.mx
falfred.uren @ correo.nucleares.unam.mx
*kgaray @cicese.mx

2469-9926/2020/101(3)/033813(13)

033813-1

with the consequent creation of a photon triplet in such a
manner that energy and momentum are conserved. TOSPDC
is a direct generalization, relying on a x® nonlinearity, of
the well-known second-order spontaneous parametric down-
conversion (SPDC) process, mediated by a x® nonlinear-
ity. TOSPDC has been explored theoretically, at first in a
hypothetical medium with third order nonlinearity [24], and
later through specific proposals: One, from our group, relying
on the use of a thin cylindrical waveguide surrounded by
air, which could be realized in the form of a tapered fiber
[25,26], and another based on nonlinear crystals [27]. Note
that given the very large spectral separation between the pump
(at w,) and the generated photons (around w,/3) inherent
in TOSPDC, phase matching involving all four waves in the
fundamental fiber mode is, for fused silica and other fiber ma-
terials, not feasible. Thus, our proposal relies on intramodal
phase matching with the pump in a nonfundamental mode and
the photon triplets in the fundamental mode. Although phase
matching can, indeed, be attained in this manner, the challenge
now becomes the fact that the emission rate, which is propor-
tional to the overlap integral among the four interacting waves
is very low for such intramodal phase matching. Under ideal
conditions and with realistic experimental parameters, the
expected emission rate from such a source is < 10 triplets/s.

As with photon-pair generation, the characterization of
spectral emission properties, including spectral entanglement,
would become a key aspect of photon-triplet experiments.
A comprehensive review of spectral characterization tech-
niques for photon pairs can be found in Ref. [28]. Such
spectral characterization of photon pairs can be time con-
suming, particularly, if rasterization techniques are used.
Given the very low conversion efficiency of TOSPDC,
such rasterization techniques would, in all likelihood, be
unfeasible.
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Among the techniques reviewed in Ref. [28], stimulated
emission tomography (SET) based on a stimulated version
of the parametric process is promising. As first explored in
Ref. [29] for photon-pair sources, it is possible to utilize a
tunable seed, say, at the idler frequency w;, so as to stimulate
emission at the signal mode, which can then be measured with
the help of a standard spectrometer for classical light. The
authors demonstrated that the rate of spontaneous generation
in the idler mode can be inferred as the quotient of the
stimulated emission rate for the signal mode to the incoming
seed power in the idler mode. By combining the signal-mode
(classical) spectra obtained for the various idler frequencies, it
then becomes possible to obtain a two-dimensional frequency
map that corresponds to the joint spectral intensity, which
would have been obtained through a quantum measurement of
the unseeded spontaneous source. The theoretical proposal by
Liscidini and Sipe, was later implemented experimentally by
Fang and co-workers [30,31]. One of the motivations behind
the present paper is to explore whether this idea can be ex-
tended to photon-triplet sources. In this regard, the pioneering
work of Dot et al. [27] described theoretically spontaneous
and stimulated generation in the third-order parametric down-
conversion process in the possible presence of a seed or
seeds with experimental work by the same authors reported
in Refs. [32,33]. In addition, Okoth et al. [34] have analyzed,
theoretically, seeding for third- and higher-order parametric
processes.

In this paper, we present the theory for the process of a
stimulated third-order parametric down-conversion process as
a generalization of the scheme proposed by Liscidini et al.
in which we employ a fully quantum description of all the
fields involved. Note that, henceforth, we use the abbreviation
STOPDC for stimulated third-order parametric downconver-
sion, in contrast to TOSPDC for third-order spontaneous
parametric down-conversion. As part of this description, we
study different configurations for the pump and seed fields
and derive expressions for the resulting output flux for each
of the fields involved as an important guide for future experi-
ments. In addition, we explore the possibility of exploiting the
STOPDC process as the basis for the spectral characterization
of the three-photon state in analogy to the stimulated emission
tomography technique already demonstrated for photon-pair
sources. We hope that the present paper will pave the road
towards the full exploitation of the process of third-order
parametric down-conversion, particularly, in seeded configu-
rations.

II. QUANTUM STATE PRODUCED BY STOPDC

Figure 1 depicts the STOPDC process schematically. NL
represents the nonlinear material with a x©®) nonlinearity,
assumed to be in the form of an optical fiber. The pump field
is described by the coherent field D,,({tx}) |vac), in terms of
the displacement operator ﬁp({a}). The operators b(k;) with
i = {1-3} correspond to the energy-conserving and phase-
matched generation modes of the spontaneous parametric
process. The generation modes can, in general, have distinct
spectral properties, which have been emphasized with the
well-separated spectra shown on the right. Finally, another
coherent state corresponding to the seed field is included,

Dp({ﬂ} [vac)
j\f)p({a})vm > b(k1) > -
; b(kz)

T Dieea({8})|vac b—k_) :

ced({3})|vac

FIG. 1. Schematic for the process of stimulated or seeded third-
order parametric down-conversion. NL represents the third-order
nonlinear material. Pump and seed fields are described as coherent
states ﬁp({a}), Dyeea({B}) |vac) . b(ky), b(ky), and b(ks) are the gen-
eration modes.

shown in the figure as Dseed({ B}) |vac). The seed field is shown
with a wide spectrum to point out that it could overlap with
more than one of the TOSPDC generation modes. Note that
we refer to each generation mode which exhibits overlap with
the seed field or fields as a seeded mode. Note also that
the light exiting the nonlinear medium at modes b(k;) with
i = {1-3} could include spontaneously generated triplets,
photons from the applied seed, as well as stimulated radiation
resulting from the effect of seeding. In our analysis, we em-
ploy a description of the fields in a dispersive medium [35,36]
and obtain the evolution of the input field asymptotically to
the output of the medium in a similar fashion to the treatment
in Refs. [29,37].

In this paper, we employ the so-called asymptotic-state
formalism [37,38], which was developed originally for x®
processes and includes the possibility of multiple pairs of
photons per generation event and the use of seeding to
third-order parametric down-conversion. This approach has
two important benefits as compared to other published
Heisenberg-formalism treatments: (i) The full quantum-
mechanical nature of the pump and seed fields can be retained,
and (ii) it permits the full three-dimensional propagation
of the fields, including the transverse amplitude, instead of
restricting the propagation to a given axis. Note that, although
the case studied in this paper is one dimensional in nature
(specific fiber modes), it is useful to have an approach which
is ready to be applied in a more general context.

We study the third-order parametric down-conversion
process with the total Hamiltonian H = Hy + Hxp. Hp =
hY., [ dkw, (k)b (k)b(k) with p designating each of the
fields involved is the linear part, and the nonlinear part is given
as [35,39]

3
Hyp = Zeo/drE-x(3)E-E-E+H.c., (1)

where ¢ is the vacuum electric permittivity, x ® is the third-
order nonlinear susceptibility of the medium, and E the total
electric field, which contains the sum of all fields involved
as E=) . Eu. Individual fields propagate in the x direc-
tion with polarization o and transverse normalized amplitude
ut(y, z); they can be written as

M(x) ze(,/ ﬁk Vk
V 47'[6(a)(k ))

x[15; (v, )by (k)™ — 1w * (v, 2)b!, (ke ™1, (2)
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where 7 is the Planck constant, k is the wave number, vy is
the group velocity, b’L (k) is the creation operator for field pu,
and e(w(k,)) = k;, /pow® (k,,) with p is the permeability of
free space. In this treatment, we will consider co-polarized
and collinear fields, allowing for a scalar description of (2).
The Schrodinger equation for the Hamiltonian is as follows:

iﬁ% [ (1)) = Hxe () [¥ (@), 3)
where the time-dependent Hamiltonian is obtained as
HaL(t) = [dPreft!/"Hy e~Hit/h Tt can be shown that the
energy-conserving term for the TOSPDC process is as fol-
lows:

HNaL (@) = /dkp/dkl/dkz/dk35(k1,k2,k3,kp)

x b (k)b' (ky)b' (k3)ak,p)e™ ' + Hee.,  (4)

where Aw = w, — w; — wy — w3 with w, and w; (with i =
1-3) as the frequency of the pump and the down-converted
fields, respectively, and H.c. denotes the Hermitian conjugate.
In Eq. (4), the function S(k, k2, k3, k) is defined as

2

Stki, ka, ks, kp) = ———e€ox

327

|: kpkikaoks vipvri Viovis :|l/2
e(w(kp))e(w(ky))e(w(ka))e(w(ks))

X / d’r ulf(y, Du*(y, Dur* (y, 2)

X U3 Lx(y, z)e iAbx (5)
where Ak = —k, + ki + ky + k3, which is also used in the
more explicit form Ak(w;, wz, w3) = —ky(w; + wy + w3) +

ki(w1) + ka(w7) 4 k3(w3) throughout the text.

We proceed in a similar fashion to Ref. [29] with the
asymptotic-in fields to the nonlinear medium as coherent
states in the form

[¥in) = exp (/a(k) Tdk — H. c)

X exp < / B(k)bidk — H.c.) |vac) (6)

where «(k), (k) are the spectral envelopes of the pump and
the seed fields, defined such that [ dk|e(k)|*([ dk|B(k)|*)

J

represents the average photon number of the pump (seed) in
the interaction time. The time-dependent solution to (3) is
given as

W (1)) = exp (/ a(k, t)aldk — H.c.)

X exp </ Bk, )b} dk — H.c.> lo@®). (1)

In the above equation, the resulting complete state of the
system |y (¢)) is expressed in such a way that the evolution
of the pump and seed fields appears explicitly in the operator
formed by the product of the two exponentials in Eq. (7) as is
discussed below this corresponds to the classical evolution—
i.e., in the absence of quantum-mechanical effects—according
to a set of coupled differential equations [Egs. (9), below].
|[Y(t)) can then be formed by this operator acting on a
state |@p(1)), itself the result of a perturbative calculation
[see Eq. (11), below] based on an effective Hamiltonian [see
Eq. (10), below], which will lead to the result in Eq. (12). The
quantities @(k, 1) and B(k, t) in Eq. (7) represent the temporal
evolution of the coherent input fields as

alk,t) =alk)+ak,t), (8a)
Bk, 1) = B(k) + Bk, 1). (8b)

Note that, in Eq. (8), @(k,t) and 3(k, t) are the time-
dependent parts of the spectral envelopes. We assume that the
pump and seed fields follow a classical evolution description
as in Ref. [29]. The quantum operators for the pump and seed
field are substituted by their classical amplitude fields; it is
then straightforward to obtain the following coupled set of
equations for the amplitudes & and fB:

da(kp,t)
dk] dkz dk3S(k1,k2,k3, p)
xﬂ(kl,rm(kz,r)ﬁ(kg,r)e‘“w‘, %a)
dpB(k;,t
'3( 1 ) /dkz/dk3/dkl,S(k1,k2,k3,k )
xB (ko )P (k3. @k, 1)e™ 2" (9b)
Note that, in the undepleted pump approximation

da(k,,t)/dt =0, therefore, @(k,t) = 0. By substitution of
Eq. (7) into Eq. (3), one can obtain the effective Hamiltonian,

Hen (@) = f dky / dky / dl / dhsS(hy. ko, ks, kp)b* (k)b (k)BT (k3)ack, e ™ 2

+ / dk, f dk f dk, / dk3S(ky, ko, ks, k)b (k)b (ka)b' (k3 )ax (kp)e ™ A4

+3 / dk, / dk, / dk, / dksS(hr, ko, ks, kB (ks 0BT (k)BT (ks Yk, e 2"

+3 / dk, / dk, / dks / dksS(ky, ky, ks, kp)B (ky, )b (ko) (k) (ke 2" +3 / dk, / dk, / dky / dks

xS(ki, ka, ks, kp)B" (ki, 1) (ka, )BT (k3)a(k,)e 2" + Hoc., (10)
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which obeys the Schrodinger equation ih;—t lp(t)) =
Hegr |@(2)). We can obtain the resulting quantum state through
a standard first-order time-dependent perturbative approach
for |p(t)) with the aid of Eq. (10); the state at + — oo is
obtained as

1 o0
lp(00)) ~ <1+£ / dr’Heffa’)) vac). (1)

0

In what follows, we will assume that the three TOSPDC
modes are created in the same spatial mode and with the same

J

polarization, which simplifies the effective Hamiltonian since
the function S(k1, k, k3, k,,) becomes symmetric in the sense
of being invariant to permutations of the arguments k;, ko,
and k3.

Note that in obtaining an expression for state |¢p(c0))
from Eq. (11), only two out of five terms in the effective
Hamiltonian, see Eq. (10), (the second and fourth terms) yield
a contribution to the resulting quantum state; the remaining
terms vanish because they involve an annihilation operator
acting on the vacuum state. The resulting state can be ex-
pressed as follows:

27 N n n
lp(c0)) = |vac) + - / dk, f dky f dks / dk,S(ky, ka, k3, k,)b" (k0)b' (k2 )b (k3)et (k)8 (@, — w1 — @y — w3) [vac)

6 — A A
+£/dk1 /dkz/dkg,/dk[,S(kl,kz,k3,k[,)ﬂ*(k1,[)bT(kz)bT(kg)O[(kp)S(a)[]—(1)1 —wy —ws3)|vac), (12)

where the first term is associated with TOSPDC [24,25], and the second term is associated with the STOPDC.

The state in Eq. (12) can be expressed as

lp(00)) = N (Ivac) + cur |II1) + ey |IT)), 13)

with V"= 1/,/1 4 ¢, + ¢7, and in terms of a three-photon term |//) derived from the spontaneous process as well as a two-

photon term |/1) derived from the seeded process, where c¢;;; and ¢;; are the corresponding probability amplitudes, obtained from
Eq. (12) through normalization of states |//]) and |I]); these states can be written as follows:

1 N e n

n = — / dk, / dks / kit (ki ko, k)B (k)BT (ka)B (k) [vac) (14a)
1 N n

= — / dky / dkodur (e, k)BT (k)BT (ko) vac) (14b)

in terms of functions ¢y (k, k2, k3) and ¢;;(ky, k»), which are, in turn, normalized so that the integral of the absolute value

squared over all k-number arguments yields unity. ¢;;;(k1, k2, k3) and ¢y (ky, k») can be expressed as follows:

2V6r1
ki, ko, k3) = e /dkpS(klv ko, ks, kp)a(kp)d(w, — w1 — w3 — w3), (15a)
c
ki, k) = ﬁf dksprir (k. ko, k3)B* (ks). (15b)
where the terms ¢;; and ¢;;; can be expressed as follows:

727
len)? = o /dkldeddekgdkpdk;S*(klv ky, k5, k;,)S(kl, ko, k3, kp)ﬂ(ké)ﬁ*(k3)a*(k/p)a(kp)

X(S(a);,—a)l —wy — wy)d(w, — w1 — W) — w3), (16a)

, 2472 Lo ok /

le | = ) dk\dkydksdk,dk,S™ (ky, ky, k3, kp)S(ky, ko, k3, ko™ (kp)a(k,,)

x8(w, — wi — w —a)3)8(a);,—a)1 —wy) — w3). (16b)

In the undepleted pump approximation for which both sides of Eq. (9a) vanish, we can integrate Eq. (9b) so as to obtain the
following expression for 8(k;, ¢) in terms of function ¢y (ky, k2, k3),

_ 3
By, 1) = Blky) + \/;Clu / dk, / dksunr(hr. ko, ks)B* (ko) B (ks ). (17)

Within this approximation, Eq. (7) can then be written in
terms of (17) as

[Vou) = D({a}) exp ( / [Bky, 1)1B (ki )dky — H.c.)

xN (|vac) + ¢y [IIT) + ¢y |I1)), (18)

(

where ﬁ({ap}) is the displacement operator for the pump.
Note that we assume that the spectral overlap between the
pump and the TOSPDC generation modes is negligible, a rea-
sonable assumption considering the large spectral separation
between them.
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It is interesting to point out that equivalent expressions for
the stimulated process can be obtained if one starts from a
description of the electric field for each TOSPDC generation
mode as follows:

Ei(x, 1) = Bi(x, 1) + Ef'(x, 1), (19)

where E;(x,) is the corresponding quantized electric field
and Efl(x,t) is the classical seed field. By substitution of
Eq. (19) into the nonlinear Hamiltonian in Eq. (1), we obtain
three energy-conserving terms as follows:

Hni(t) = Ho(t) + Hi(t) + Ha(2), (20)

where Hy(t) represents the spontaneous process, whereas
H, () and H,(t) include the effect of the seed field overlapping
with one or two TOSPDC modes, respectively. These terms
can be expressed as follows:

Ho(t) = /dk,,/dkl /de/dk3S(k1,k2,k3,k,,)

b (k)b (k)b (ky)a(k,y)e 2" + Hee., (21a)

H(t) =3/dkp/dk1/dkg/dk35(k1,k2,k3,kp)

x B* (k3 )t (k)b (k)b (ky)e ™2 + H.c., (21b)

Hz(t) :3fdkp[dk1/dkz/dk35(k1,k2,k3,kp)
x B* (ko) B* (k3 )t (kp )b (ky e ™ 22" + Hoe. (21c)

Through the standard perturbative approach to first order,
we obtain the following state:

|Wour) = N'(Ivac) + cpy (1) + e |IT) + er 1)), (22)

in terms of normalization constant N/ where the expressions
for |III) and |II) are identical to those found above, see
Egs. (14a) and (14b), whereas |I) is expressed as follows:

i) = / dkir (kDB (k1) vac) (23)

with

3
¢1(ky) = \/;Cé—jl/dkzdk3¢(k1,kz,k3),3*(k2)ﬂ*(k3). (24)

Note the similarity of Eq. (24) with the second term in
Eq. (17). Also note that, through this approach, we obtain
directly a one-photon contribution derived from dual seeding,
whereas, in the previous asymptotic treatment, this contribu-
tion appears implicitly. In order to obtain the double-seeded
contribution in the asymptotic treatment, one may expand the
exponential terms in (7) where it should be noted that the
seed operators do not commute with those associated with
the TOSPDC generation modes. Substitution of Eq. (13) into
Eq. (7) then yields the following output state:

[ (00)) = exp (/ a(k, t)ajdk — H.c.)

x [1 + f dk Bk, t)b' (k) —H.c. + - }

x[|vac) + cyyp [(HIT) + ¢ [11)], (25)

and, by using the expression for B(k, t) obtained in Eq. (17),
one obtains the one-photon (double-seeded) term with the cor-
rect coefficient. Of course, higher-order terms which we will
ignore here appear when expanding the exponential in Eq. (7).

III. EMITTED PHOTON FLUX

We are interested in calculating the effect of seeding on the
observed intensities of the output modes as a guide for future
experiments. To this end, we calculate the expectation value of
the number operator for one of the output modes, integrated
over all k wave numbers as follows:

N = / dk (You| b"(k)b(K) [Yrou) , (26)

where N is calculated within the interaction time, which is
taken as the pulse duration if, at least, one of the fields (pump
and seed) is pulsed or as the unit time (1 s) if all fields are
continuous wave (CW). To obtain expectation values of the
number operator per unit time in pulsed cases, the expression
in (26) should be multiplied by the repetition rate R.

By substitution of (18) into (26) and assuming that the
generated modes commute with the pump modes, we can
group the resulting expression in terms of the number of
modes that overlap the seed as follows:

N =Ny + N; + Ny, 27

where the Baker-Campbell-Hausdorff [40] formula has
been used so as to rearrange the noncommuting terms
related to the observed mode and the seed modes
as DY ({B ki, HNb(K)D{B ki1, 1)}) = b(kr) + (k1) +
\/gcm [ dkadksp(k, ka, k3)B*(ka)B*(k3). Note that, in
all calculations, the integral interval will not include the seed
spectral range to avoid summing the expectation value of the
seed photon number to the stimulated photons. The term N,
in Eq. (27) corresponds to the rate of spontaneous triplet gen-
eration, whereas the terms N; and N, correspond to the gener-
ation rate in the TOSDPC modes, given the presence of a seed
field that can overlap one or two of the existing output modes,
respectively. The spontaneous term is easily evaluated as

No = 3leml? (28)

whereas the terms N; and N, are obtained from Eq. (26) with
the aid of Eq. (18) as follows:

Ny = 2Ny|Bol*®1, (29a)

N
Ny = 7°|ﬂo|4®2, (29b)

where we have written B(k) as B(k) = BoB(k); here, B(k) is
normalized so that |B(k)|?> has a unit integral, whereas |B,|>
represents the average photon number of the seed field in
terms of the frequency-integrated single-seed and dual-seed
overlap terms ®; and ®,,

0, :/dklfdkz

0, = / dk, f dks / ks (ki ko, k) B (o) B (k)
(30b)

2

/ dlsppr(ky, ky, k3)B* (k)

(30a)

2
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It becomes clear that the resulting flux is proportional
to the product of three terms: (i) the spontaneous unseeded
flux, (ii) the seed intensity (square of the seed intensity)
for the single-seed (double-seed) case, and (iii) a frequency-
integrated spectral overlap term between the three-photon
amplitude function ¢y (k1, k2, k3) and the seed. N; quantifies
the flux produced by the singly seeded process which is
mathematically described by the second term of Eq. (12).
Note that this contribution can be understood as analogous
to the quantum state produced by the processes of SPDC or
spontaneous four-wave mixing in which for a sufficiently low
parametric gain photon pairs are produced; such a process
has no classical analog. In contrast, the flux represented by
N, derived from the presence of two seeds can be fully un-
derstood in terms of the classical equations of motion for the
pump and seed fields, see Eqs. (9a) and (9b) and corresponds
to classical difference frequency generation in which a new
field with frequency w3 = @, — w1 — w; is generated with w,
as the pump frequency and w; and w, as the seed frequencies.
Note also that the singly seeded case can be understood as
double seeding with one of the seeds corresponding to vacuum
fluctuations.

It is clear from Egs. (30) that the effect of seeding will
be highly dependent on the spectrum of the seed. Note that
a significant difference arises compared to the photon-pair
case studied by Liscidini and Sipe [29] where only the term
equivalent to our N; exists.

Although we have shown expressions for the total flux
(integrated over all wave numbers of the mode in question),

|111 |pulsed

on occasion it is the emission spectra instead which are of
interest. We, thus, define the singly overlapped and doubly
overlapped emission spectra N (k) and N(k; ), respectively,
so that [dkiNi(k;) = Ny and [ dkiNo(k;) = N,. This leads
to the following expressions:

Ni(ki) = 2No|Bol*®1 (K1),

N
Ny(ky) = 7°|ﬂo|4®2<k1), 31)

in terms of spectrally resolved overlap coefficients ®;(k;) and
®;(k1), which are defined from Eq. (30),

2

/ dksunr (ke oy k) ()| (32)

(k) = /dkz

2
Oa(ky) = ‘ / dks / ks (kr. ko k) )B* (ks)| . (33)

A. Case I: Spontaneous unseeded process

We proceed to calculate the photon flux in the absence of a
seed, i.e., for B(k) = 0, so as to establish a link with previous
TOSPDC studies [25,26] and so as to define the expressions
that will be used for the seeded cases.

It may be shown that the coefficient lcr]?, which deter-
mines the spontaneous generation rate as Ny = 3|c;;;|%, may
be expressed as follows in the case of a pulsed pump:

w1 3| f(w), w2, 03)|*

33V/2hL%n Pdv
V2 — = |2/dw1/dw2[da) , (34)
873 2wio,R n(wpn(w)n(ws)n(w; + wr + w3)

in terms of the the repetition rate R, average power P,,, and bandwidth o, of the pump laser; L the length of the nonlinear
medium, n(w;) is the refractive index at frequency w; (with i = 1-3), and ny is the refractive index at the central pump frequency

wp. The nonlinear coefficient y can be expressed as [41]

_ 3xPw,ferr

35
4egc?nd )
written in terms of the spatial overlap f.;r among the four fields involved in the TOSPDC and STOPDC processes,
oo [o¢]
et = / dy / dz sy (y, D)™ (v, Dy ™* (v, 2Duz™ (3, 2). (36)
—00 —00
In Eq. (34), the joint amplitude function f(w;, w,, w3) can be written as
(w1, 02, 03) = §(01, w2, w3)E(w1, @2, 03), (37
with
E(w1, a, wy) = e~ @ Fortes—an)/oy,
. (L
E(wr, w2, w3) = smc(zAk(w],wz,wQ), (38)

where the functions £(-) and E(-) are the pump envelope and the phase-matching function, respectively. It is likewise of interest
to evaluate the limit o, — 0 in Eq. (34) so as to obtain the spontaneous generation rate for a monochromatic (MC) pump. It may
be shown that, in this limit, we obtain the following expression for |c;j; |2:

33hL? ”0 )

lenlew = 872w 2

w1 (wy — w1 — )| f(w1, 02, W) — w1 — )]
| da)1 da)2

(39
n(w1)n(wy )n(wy — wi — w)n(wp)
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The spontaneous contribution to the photon flux Ny can
be obtained with Eqgs. (34) and (39) by simple substitution
into Eq. (28). The spontaneous case is not explored further
in this paper since it has been studied in Refs. [25,26]. Also,
note that, in a seeded scenario, the spontaneous contribution
to the overall flux will tend to be negligible when compared to
the seeded output fields; expressions for the generation rate in
the presence of a seed field will be presented in the following
subsections. We divide our analysis according to the spectral
properties of the seed.

B. Case II: Pulsed seed

In this subsection, we analyze the case of a pulsed seed,
whereas the pump field is allowed to be pulsed or monochro-
matic.

1. Case Ila: Pulsed seed and pulsed pump

We first analyze the case for which both pump and seed
are pulsed. Note that seeding will produce an appreciable

J

effect only in those situations for which the pump and seed
are temporally and spectrally overlapped. In the case where
both seed and pump are in the form of a train of pulses,
this translates into the need for the two trains to: (i) be
characterized by the same repetition rate, and (ii) for the pump
and seed pulse maxima to be temporally coincident, i.e., with
a vanishing temporal delay; in what follows, fy denotes the
temporal delay between the two pulse trains. It should be
pointed out that, in practice, it may be challenging for the
pump and seed pulse trains at very different frequencies to
be temporally matched.

The spectral envelope of the seed field, assumed to be
Gaussian, may then be expressed in terms of the seed central
frequency wy and bandwidth o; as

2\ /4 .
Bw, 1) = ,30( 5 > B'(w)e'™, (40)
olm
where B'(w) = e~ (@=w0)/o] represents the adimensional
Gaussian spectral envelope function for the seed.
The resulting spectral overlap terms ©1"” and ©}' for both
fields pulsed (pump and seed) are, then, as follows:

3B33P L0 2 w 2
@I]’»P: - 3() av k |J/| /d(l)lfda)3 w13 /d ﬂ'*(a) )e zwztof(wl w,, a)g)e'(L/z)Ak(“" ,W2,w3) , (4121)
22m30,0506R, |cir|? n(wy)n(ws) ( 2)
and
3B¥nd Py L*h 2 . ©
pp ’ av [y 2/ o L fdwz/dwsez(L/Z)Ak(wl,wz,ws) /Lﬂg*(wz)ﬂ‘é*(%)
23V2wk0 20,7 2R, e n(wr) n(w2)n(ws)
2
x f (1, Wy, w3 )e @@ (41b)

for the cases where the seed overlaps one TOSPDC mode and two TOSPDC modes, respectively.

2. Case IIb: Pulsed seed and monochromatic pump

From the expressions which appear in the last subsection, it is possible to obtain versions for a monochromatic pump by
taking the limit o, — 0. We, thus, obtain the following expressions for the overlap terms @CW P and @CW P valid for a pulsed

seed and monochromatic pump,

w1 (wy — w

— w3)ws

2

QCW.p 3o, PR L |y |? d

I = 2 a)ld w3
22/20,752wy ||

®cw,7_2 |06p|2h2 JL vy
2 2 ol2miwy  |emrl?

and

X B (wy — w1 — w3) B (w3)E(wi, wy — w1 — w3, W3)

for the cases where the seed overlaps one TOSPDC mode and
two TOSPDC modes, respectively, where |« ,,|2 represents the
average pump photon number which temporally overlaps the
seed pulse.

C. Case III: Monochromatic seed

In this section, we present expressions for the case where
the seed is monochromatic, whereas the pump is allowed to
be either pulsed or monochromatic.

1B (wo — @1 — @3)|* E* (01, wg — w1 — w3, 03), (42a)

n(wpn(wy — @1 — w3)n(ws)

01(0® — ) — w3)w; :|1/2

da)1 ‘ /dw;|:
n(wn(wy — w1 — w3)n(w3)

2
(42b)

1. Case ITlla: Monochromatic seed and pulsed pump
We obtain the following expressions for the overlap terms
@,1;,cw and ®g,cw valid for a pulsed pump and monochromatic
seed:
3PPyl o @), ly |?

22\/_715/20,,Rwon(a)1)n(w ) lenn|?

(]
xf/ doidwy
n(wy)

®p Ccw

|f (@1, w2, @))|*,  (43a)
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and
3\ _~ v
®p,CW=ﬁ > av 372
2 2 JTS/ZO'pRa)(% |C]]]|2
/ dor|f(@n, ), P—212% (43)
X w wy, W, O)|"——————=
1 DI (@)

for the cases where the seed overlaps one TOSPDC mode and
two TOSPDC modes, respectively, where ) is the frequency
of the MC seed.

2. Case IIIb: Monochromatic seed and monochromatic pump

We obtain the following expressions for the overlap terms
OV and @S™-Y valid for the case where both pump and
seed are monochromatic:

cwew _ PhPuamgL? |y
O =500 2
Priwy el

x/da)

w1y (wy — w; — )

'n(onn(@)n(wy — o) — )

x B (wy, wg — w; — @, @), (44a)
oowew _ (3 APamLi @y — 20w Iy
? 2) mradn(wy — 20)n*(@)) |2
x B3 (), wy — ) — ), @)). (44b)

This case for which the pump and seed are both monochro-
matic and, therefore, a continuous wave is particularly

|
N %2N02/dk1/dk2
NQWNQZ/dkl

i#]

2
’

f sk, ko, ka) B (k)

2

/ ks f dhsp (ks Ko, k) B () B (ks )

One may note that the first term in N,, which corresponds
to nondegenerate seed fields, can be used as the basis for
tomographic reconstruction if seeds 7, j are scanned within the
phase-matched interval (see the next section). Note that, in the
specific situation where there are two seed fields present, there
are, in general, six contributions to the output field that can be
described as follows:

(i) Spontaneous term.

(ii) Single overlap of seed 1 with one TOSPDC mode.

(iii) Double overlap of seed 1 with two TOSPDC modes.

(iv) Single overlap of seed 2 with one TOSDPC mode.

(v) double overlap of seed 2 with two TOSDPC modes.

(vi) Double overlap of seeds 1 and 2, each with a distinct
TOSPDC mode.

The possible dominance of some terms over the others will
depend on specific configurations of seeds, pump, and the
nonlinear characteristics of the nonlinear medium.

E. Stimulated emission tomography

Let us consider a specific multiple-seed configuration (see
the previous section), specifically with two distinct seed fields.
Let us further assume that these seed fields are sufficiently

%Z/dkl

interesting because in contrast with the case where both fields
are pulsed, temporal overlap between them is guaranteed with
no additional effort.

D. Case IV: Multiple seed fields

We can straightforwardly extend our analysis to the case
where multiple seed fields are simultaneously present by an
appropriate rewriting of the single-seed description. Let us
assume that each seed field is a coherent state described by its
respective displacement operator D({8;}) |vac). If n different
coherent states are superimposed, for example, by means of
n — 1 dichroic mirrors, the resulting field can be described as
the product IT;D({B;}) |vac). This can be simplified under the
assumption that there is no spectral overlap between any two
seed fields, i.e., fdk Bi(k)B;j(k) = 0 for all i # j, leading to
an effective single seed with amplitude,

Bk) — > Bilk). (45)

Note that, under these assumptions, f dk|B(k))? =
3" 1B, where |B;|* is the average photon number for each
seed field. Note also that, in the symmetric case for which
the function ¢(k;, k», k3) is invariant under permutations of
its arguments, the seeded throughputs can be expressed as

(46a)

2
/ dks f dkspk. ko, ko) (ka)BE(Ks)| . (46D)

(

narrow in frequency (or k£ number) so that we may approxi-
mate the integrals in Egs. (30) as

o) ~ / dky f dhalp(kr. ko, K)Poki, (47a)

0, ~ / dkilg (ki kb, k))1*8kik;, (47b)
where 0k;(8k;) is the k-number bandwidth for the seed field
i(j). Let us rewrite the expressions for the single-seed and
double-seed throughput, Eqgs. (29), explicitly in terms of the
two distinct seed fields i and j,

N = 2No| By [*®1, (48a)

N,
Ny = =188y 02 (48b)

where |8y |? is the average photon number of the i seed field,
centered at k).

Now, for the double-seed term N,, let us assume that
a spectrally resolved measurement is carried out so as to
determine the throughput for seed fields i and j at each wave-
number k, Ny (k), defined so that [ dkNj (k) =N,. We
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likewise define a spectrally resolved double-seed overlap
®,(k) so that f dk ©,(k) = ©®,. Note that the spectrally re-
solved doubly seeded overlap term essentially corresponds
to the joint spectral amplitude of the TOSPDC triplets as
follows: ®, (k1) = |¢p(ky, ké, ké)lz(SkiSkj. We can then write

- N,
N (k) = |8y |By | ©20k1)

= 201y B0tk Ko KD Pokisk. (49
It is then a simple matter to rewrite this expression as
Ny (ki)
2 2 :
(B "By | 8kisk;

This relationship forms the basis for the SET which
could be implemented for the spectral characterization of the
photon-triplet joint spectral intensity. For each pair of values
k; and k; which are scanned (rasterized) within the phase-
matched region, the resulting measured spectrum N,’(k;)
is divided by the product of the seed intensities and their
bandwidths. By accumulating measurements for the different
k; and k; values, one may, in principle, extract the desired
|p(ki, ki, k(J))|2 joint spectral intensity for the TOSPDC pho-
ton triplets.

Note that, although photon-triplet SET is based on two
independent singly overlapped seed fields, the presence of
additional signals derived from: (i) doubly overlapped seeding
for one or both of the seed fields, and (ii) one of the seed fields
exhibiting overlap but not the other may constitute sources
of noise for the SET measurement since it is impossible to
discern whether a particular output photon is derived from
SET or from these two other competing seeded TOSPDC
variations. However, SET is likely to yield usable information
because: (i) The signal obtained from a doubly overlapped
single seed tends to be spectrally localized, and (ii) the signal
from single seeding is orders of magnitude smaller than that
derived from double seeding.

N, o
7°|¢<k1, ki, kD> = (50)

IV. STIMULATED GENERATION IN A
SPECIFIC SITUATION

In this section, we present the results of simulations of
the expected stimulated throughputs and emission spectra for
a specific TOSPDC configuration. The source characteristics
assumed here are the same ones as used in previous proposals
from our group [25,26] with a nonlinear medium in the form
of a thin optical fiber with core radius of » = 0.395 um of
length 1 cm. The pump is first assumed to be centered at
w, = 2mwc/0.532 um with bandwidth of 4.7/27 THz, trav-
eling in the HE;, spatial mode. The generated TOSPDC
modes are centered at w; = w/3 in the mode HE;;. The
resulting TOSPDC joint spectral intensity (JSI) is shown
in Fig. 2 with darker shades of gray representing higher
probabilities of emission. On the walls, we have shown plots
of the two-photon marginal spectral distributions obtained
by tracing over one of the generation modes. Note that this
configuration corresponds to the degenerate case with triplet
emission peaked at w; = w; = w3 = w,/3. Note also that the
concavity of the JSI is towards the origin in the joint emission
wavelength space as is evident from the fact that the

1640
—~1620
F.1600
< 1580

1560

1700
1600

Ao (nm)

Au (nm) 00

1550

FIG. 2. Plot of the TOSPDC joint spectral intensity
|f (A1, A2, A3)|? in the frequency-degenerate source configuration.
Marginal distributions are shown on each of the three coordinate
planes.

two-photon marginals extend towards A < 3, (with A, =
2me/wp).

In Fig. 3, we depict the TOSPDC JSI for the experimental
situation as above, except that the pump frequency is shifted
from w, = 27¢/0.532 pum to 27r¢/0.531 nm. It is clear from
the absence of an emission maximum at @, /3 that this corre-
sponds to a spectrally nondegenerate source configuration.

Note that in accordance with Egs. (21b) and (30), single
seeding corresponds to taking a “slice” of the TOSPDC JSI at
the seed frequency, i.e., to the intersection between the three-
dimensional JSI and a plane placed at the seed frequency as
shown schematically for the nondegenerate case in Fig. 4(a).
The function, thus, obtained with two-frequency arguments
can be either: (i) integrated over both frequency arguments
for the total seeded flux, or (ii) integrated over one of the
frequency arguments for the seeded emission spectrum shown
as a blue curve in Fig. 4(a). Similarly, in accordance with
Egs. (21c) and (30b), double seeding corresponds to taking

1700
1650
g
£ 1600
~ 1550
1500
150d§::\\\\\\\\\x\“,(,,,——’/K”":::::>
1600 1700
1700 1600
i (nm) 1500
1 A2 (nm)

FIG. 3. Plot of the TOSPDC joint spectral intensity
| f (A1, A2, A3)|? in the frequency nondegenerate source configuration.
Marginal distributions are shown on each of the three coordinate
planes.
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FIG. 4. Schematic for (a) singly overlapped seeding, which cor-
responds to the intersection of a plane at the seed frequency with
the joint spectral intensity, (b) doubly overlapped seeding, which
corresponds to the intersection of two orthogonal planes defined by
each of the two seeds with the joint spectral intensity.

a double slice, i.e., to the triple intersection among the JSI, a
plane placed at the first seed frequency, and a second plane
orthogonal to the first placed at the second seed frequency as
shown schematically for the nondegenerate case in Fig. 4(b).
The function, thus, obtained may be as follows: (i) left intact
for the emission spectrum or (ii) integrated over the frequency
argument for the total flux,

We now proceed to present numerical evaluations of the
seeded throughputs obtained for various situations of interest,
based on the source described above. We are interested in
comparing the behavior in the presence of seeding of the de-
generate and nondegenerate source configurations (see Figs. 5
and 6). For both of these configurations, we are also interested
in comparing the resulting behavior when the pump and seed
fields are selected as pulsed or monochromatic in all possible
combinations.

At first, we assume that both the pump and the seed are
monochromatic. In order to be able to provide numerical
estimates for the throughputs, we (arbitrarily) assume a pump
power of 200 mW and a seed power of 10 mW. For the degen-
erate source configuration resulting from a pump wavelength
of 532 nm, and in the presence of a single-seed frequency,
Fig. 5(a) shows the emitted spectra (colored solid lines)
Ni(A1) obtained for a number of different seed frequencies
Aseed as derived from singly overlapped seeding. The dashed
line shows the doubly overlapped (i.e., frequency-degenerate
double-seed) throughput obtained in the presence of a single-
seed frequency wseeq at frequencies w, which fulfill the energy
conservation constraint @, = 2w, — Wseed.

Figure 5(b) shows (blue curve) the total flux expected for
each seed frequency, obtained by integrating the individual
singly seeded spectra from panel (a). So as to compare with
the degenerate double-seed case, we also present, on the
same axis, the doubly seeded behavior (orange dashed curve),
already shown in panel (a). It becomes clear from this figure
that the doubly seeded case leads to three orders of magnitude
greater flux as compared to the singly seeded cases. Note that
the doubly seeded flux is, indeed, expected to be greater than
the singly seeded flux by a factor proportional to the product
of the second-seed intensity and the quotient of the overlap
terms ©,/0; [see Egs. (48) and (49)], which, in this case,

[1/s]

x105
3.0

1.5

(arb. units)

0.0

200 -

N

100 +

1.60
(c) Aseed (,um)

1.70

1.45 1.501.55 1.601.65 1.701.75 '
Aseedy (um)

FIG. 5. For the frequency-degenerate source configuration
(a) colored continuous lines indicate spectra obtained from singly
overlapped seeding, whereas the dotted line indicates doubly over-
lapped seeding at degenerate seed frequencies. (b) The blue line is
the total flux at each seed frequency obtained as the integral of the
spectra in panel (a), whereas the orange dashed line indicates doubly
overlapped seeding at degenerate seed frequencies also shown in
(a). (c) Doubly overlapped seeded flux obtained with independently
varying seed frequencies.

amounts to these three orders of magnitude. Finally, panel
(c) shows the doubly seeded throughput obtained by letting
the two seed frequencies wgeeq; and wseeqr Vary independently.
Note that we can recover the orange dashed curve in panel (b)
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m
=
[
5
o)
e
)

1.50 1.60 1.70

)\seed (,Um>
(c) [1/5] &
x10

1664nm

1.50 1.60 1.70
Aseed, (,um)

FIG. 6. For the frequency nondegenerate source configuration
(a) Colored continuous lines indicate spectra obtained from singly
overlapped seeding, whereas the dotted line indicates doubly over-
lapped seeding at degenerate seed frequencies. (b) The blue line is
the total flux at each seed frequency obtained as the integral of the
spectra in panel (a), whereas the orange dashed line indicates doubly
overlapped seeding at degenerate seed frequencies also shown in
(a). (c) Doubly overlapped seeded flux obtained with independently
varying seed frequencies.

by evaluating this nondegenerate doubly seeded response
along the line wgeed) = Wseed2-

Let us now turn our attention to the nondegenerate source
configuration with a pump wavelength of A, =531 nm

for the case where both the pump and the seed are
monochromatic. Again, we assume a pump power of
200m mW and a seed power of 10 mW. Figure 6(a)
shows the emitted spectra (colored solid lines) Nj(A;)
obtained for a number of different seed frequencies Ageed
as derived from singly overlapped seeding. The dashed line
shows the doubly overlapped (i.e., frequency-degenerate
double-seed) throughput obtained in the presence of a
single-seed frequency wseeq at frequencies w, which fulfill the
energy conservation constraint o, = 2w, — Wseed-

Figure 6(b) shows (blue curve) the total flux expected for
each seed frequency, obtained by integrating the individual
singly seeded spectra from panel (a). So as to compare with
the degenerate double-seed case, we also present, on the
same axis, the doubly seeded behavior (orange dashed curve),
already shown in panel (a). As for the degenerate source
configuration, the doubly seeded case leads to three orders
of magnitude greater flux as compared to the singly seeded
cases. Also note that, in contrast with the degenerate source
configuration, the frequency-degenerate doubly seeded case
is in the form of two sharp peaks whereas the singly seeded
contribution is spectrally broad. Finally, panel (c) shows the
doubly seeded throughput obtained by letting the two seed
frequencies wgeed; and wgeedqr Vary independently. Note that we
can recover the orange dashed curve in panel (b) by evaluating
this nondegenerate doubly seeded response along the line
Wseed] = Wseed2- Also note that, in contrast with the degenerate
source configuration, this N, behavior with nondegenerate ar-
guments is in the form of a ring instead of a single broad peak.

We have contrasted the behavior under singly and dou-
bly overlapped seeding of the degenerate and nondegener-
ate source configurations. In order to compare for each of
these configurations, the behavior when each of the pump
and seed are allowed to be pulsed or monochromatic, we
select four spectral points from Figs. 5 and 6 and show the
resulting throughputs in Table 1. Point A with A; = 1596 nm
corresponds to the location of the maximum rate of the
seeded throughput for the degenerate source configuration.
In the presence of a single-seed wavelength for the nonde-
generate source configuration, point B with A; = 1521 nm
corresponds to one of two maxima of the singly overlapped
seeded throughput, whereas point C with A; = 1557 nm cor-
responds to one of two maxima of the doubly overlapped
seeded throughput. Finally, point D with A; = 1532 and A, =
1664 nm corresponds to a nondegenerate selection of seeds
both exhibiting overlap with the JSI.

Note, for point A, that although the throughput difference
between the doubly overlapped and the singly overlapped
cases is three orders of magnitude for the monochromatic-
monochromatic situation (as was already pointed out), this
difference grows to a remarkable eight orders of magnitude
for the pulsed-pulsed situation. Points B and C illustrate that,
at a singly overlapped (and nondoubly overlapped) spectral lo-
cation (i.e., point B), N, drops sharply as expected, compared
to point C where both types of overlap occur. Nevertheless, the
drop in N, for point B is orders of magnitude less severe for the
pulsed-pulsed situation as compared to the monochromatic-
monochromatic situation since, for the former, the nonzero
bandwidths involved ensure that some overlap with the JSI
survives. Point D illustrates that for double-overlap with
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TABLE I. Comparison of the resulting seeded throughput for pump and seed in different combinations of being pulsed and MC at spectral
points A (pertaining to the degenerate D source configuration), and points B-D (pertaining to the nondegenerate A/D source configuration) as

indicated in Figs. 5 and 6.

Wavelength (nm) N;(A) (photons s~) Nii(hy,, As,) (photonss™')
Pulsed-pulsed D A A = 1596 Ny(Ay) = 4.0 x 108 Ni(hi, Ap) = 1.025 x 10
ND B )L] = 1521 N](}L]) =4.0 x 106 N[]()L], )\1) =1.1 % 1011
c A = 1557 Ni(Ap) = 3.8 x 106 Ny, Ap) = 9.8 x 1013
D A =1532 Ny(Ay) = 4.8 x 108 Ni(A, A1) = 3.6 x 101
)LQ = 1664 N](}Lz) =44 x 106 N[]()\‘z, }‘2) =13x 1010
N][()\.], )\.2) =1.0x 10]4
MC-MC D A A = 1596 Ny(hy) = 2.8 x 102 Niy(h, Ap) = 2.6 x 10
ND B )L] = 1521 N](}L]) = 30 X 102 N[]()L], )\1) =14
c A = 1557 Ny(h) =82 Niy(hq, A) =22 x 10°
D A =1532 Ny(Ay) = 1.25 x 10? Niy(hi, A1) =26
)LQ e 1664 N](}Lz) e 20 X 102 N[]()\‘z, }‘2) B 88
N][()\.], )\.2) =25x 105
Pulsed MC D A A = 1596 Ny(A1) =9.7 x 10712 Niy(h, A1) = 1.4 x 107°
ND B )L] = 1521 N](}L]) =8.9 x 10712 N[]()L], )\‘1) =4.8 x 10713
c A = 1557 Ni(A)) = 8.418 x 10712 Ny, ) = 1.1 x 1070
D A = 1532 Ny(A)=1.1x 1071 Nip(h, A1) = 2.3 x 10712
)\,2 = 1664 N](}Lz) =13x 107“ N[]()Lz, }‘2) =18x 10712
Ny, Aa) = 1.4 x 107°
MC pulsed D A A = 1596 Ny(A) =38 x 10710 Niy(A, A1) = 6.0 x 1073
ND B )\.1 = 1521 NI(A1)=40 X 10710 N,,(Al,kl)zo
c A = 1557 Ni(A) = 1.1 x 10710 Ny, ) = 5.7 x 1073
D A =1532 Ni(h) =17 x 10710 Niy(hi, A1) = 3.0 x 1077
)\,2 = 1664 NI()‘Z) =2.6 x 10710 N[I()Lz, )\.2) =3."7x 10727

Ni(A, Ap) =52 x 1073

dissimilar seed frequencies, the resulting throughput is similar
as compared to the case of frequency-degenerate seeds.

In obtaining the values shown in the table, we have as-
sumed for the pulsed configurations a pump bandwidth of
0, = 4.7 x 10"? /27 Hz and a seed bandwidth o, of a tenth
of this value, i.e., o, = 0,/10, whereas we have assumed a
repetition rate of 10 MHz (for both pump and seed). In the
case where both fields are pulsed, we have assumed that they
are perfectly temporally matched. It is clear from these results
that the pulsed-pulsed situation leads to the greatest emitted
flux, four (nine) orders of magnitude larger as compared to
that obtained in the monochromatic-monochromatic situation
for singly overlapped (doubly overlapped) seeding. The mixed
cases, i.e., monochromatic pulsed and pulsed monochromar-
tic, are clearly less interesting with a much reduced flux due to
the resulting hampered temporal matching between pump and
seed. Obtaining perfect temporal matching between a pulsed
pump and a pulsed seed may be challenging in practice unless
one of them gives rise to the other through an appropriate
nonlinear process [42]. In cases where such pulsed temporal
matching is unfeasible, the monochromatic-monochromatic
situation is clearly the best alternative.

V. CONCLUSIONS

In conclusion, we have analyzed theoretically as well as
numerically the process of STOPDC. The paper is based
on our previous studies of TOSPDC with the addition of
seeding. We present a calculation leading to expressions for
the seeded throughput, which is a direct generalization of

previously reported studies [29] on second-order stimulated
parametric down-conversion. In our analysis, we allow the
seed or seeds to overlap one or two of the TOSDPC modes,
and likewise, we allow the pump and seed fields to be either
monochromatic or pulsed. We present general expressions for
the spectra and flux produced by the STOPDC process as
well as a numerical study for a particular source design. We
conclude from our numerical study that doubly overlapped
seeding can lead to a considerably greater flux (in the cases
shown by up to eight orders of magnitude) as compared to
singly overlapped seeding. We, furthermore, describe how
doubly overlapped seeding may be employed as the basis
for stimulated emission tomography which allows for the
reconstruction of the three-photon joint spectral amplitude.
We find that, among the different combinations of monochro-
matic and pulsed natures for the pump and seed fields, the
pulsed-pulsed and monochromatic-monochromatic cases lead
to much greater throughputs as compared to the mixed pulsed-
monochromatic cases. Although the pulsed-pulsed situation
is the ideal one permitting the greatest seeded flux, the dif-
ficulty of attaining temporal matching between two indepen-
dent pulse trains makes the monochromatic-monochromatic
an attractive alternative. We hope that this paper will guide
future experimental work on seeded third-order parametric
down-conversion.
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