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Abstract
We introduce a new kind of spontaneous fourwavemixing process for the generation of photon pairs,
inwhich the fourwaves involved counter-propagate in a guided-wave c( )3 medium;we refer to this
process as counter-propagating spontaneous fourwavemixing (CP-SFWM).We show that for the
simplest CP-SFWMsource, inwhich all waves propagate in the same polarization and transverse
mode and inwhich self- and cross-phasemodulation effects are negligible, phasematching is attained
automatically regardless of dispersion in thefiber orwaveguide. Furthermore, we show that in two
distinct versions of this source (both pumps pulsed, or one pumppulsed and the remaining one
monochromatic), the two-photon state is automatically factorable provided that the length of the
nonlinearmedium exceeds a certain threshold, easily achievable in practice since this threshold length
tends to be in the range ofmm to cm.We also show that if one of the pumps approaches the
monochromatic limit, and for a sufficient nonlinearmedium length, the bandwidth of one of the two
photons in a given pairmay be reduced to the level ofMHz, compatible with electronic transitions for
the implementation of atom–photon interfaces, without the use of optical cavities.

1. Introduction

Photon pairs produced by spontaneous parametric processes have enabledmany important advances in
quantum-enhanced technologies such as quantummetrology [1], quantum communications [2] and quantum
computation [3]. The processes of spontaneous parametric downconversion (SPDC) based on second-order
nonlinearities [4] and of spontaneous fourwavemixing (SFWM) based on third-order nonlinearities [5] are
well-established as sources of photon pairs. The SFWMprocess, implemented in optical fibers [6–8], has gained
prominence as a viable alternative to SPDCwith a number of distinct advantages including the elimination of
losses associatedwith coupling of photon pairs into opticalfibers, a greater scope for photon-pair engineering
[9], as well as the possibility of an essentially unlimited interaction length in long opticalfibers.

The development of photon-pair sources based on guided-wave nonlinear opticalmedia (fibers or
waveguides)with tailored spatio-temporal properties is an ongoing field of research. On the one hand, it is well
known that in order to herald a quantum-mechanically pure single photon from a photon-pair, it is essential
that the two-photon quantum state be free from entanglement in all photonic degrees of freedom [10].While an
appropriate combination of spectral and spatial filtering can render a two-photon state factorable, scalability to
higher dimensions for protocols requiringmultiple pure heralded single photons necessitates in practice
photon-pair engineering so thatfilteringmay be precluded. On the other hand, while photon–atom interfaces
require single photonswith both frequency and bandwidthmatched to those of the atomic transition in
question, photon-pair sources based on both SPDC and SFWMtend to be characterized by a bandwidthwhich is
orders ofmagnitude larger than that of atomic transitions. In order to remedy this, one possibility is to resort to
cavity-enhanced processes inwhich the nonlinearmedium is placed inside a high-finesse optical cavity resulting
in the emission of photon pairs in the (narrow) spectralmodes supported by the cavity [11–16].
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In the SFWMprocess, two pumpphotons are annihilated in a guided-wave c( )3 medium, such as afiber or
waveguide, leading to the generation of signal and idler photon pairs in such amanner that energy and
momentum are conserved. In all SFWMsources demonstrated to date, the fourwaves involved (the two pumps,
the signal, and the idler) propagate in the same direction along the fiber orwaveguide. In this paper we introduce
a new kind of SFWMprocess, to the best of our knowledge not studied previously, inwhich the two pumpwaves
are launched fromopposite ends so that they counter-propagate in the nonlinearmedium.We refer to such a
process as counter-propagating SFWM, orCP-SFWM. In this process, one of the daugther photons, whichwe
call signal, is emitted so that it backpropagates with respect to pump 1,while the conjugate idler photon
backpropagates with respect to pump 2.Note that c( )2 -based processes have been studied inwhich the two
generated photons counter-propagate leading to interesting spatio-temporal engineering possibilities [17–24].
Also note that classical implementations of four wavemixing (stimulated process)withCPfields have been
previously proposed and demonstrated [25–28].

Aswe discuss below, theCP-SFWMprocess leads to some unique properties that distinguishes it from
standard SFWM. First, regardless of the specific dispersion properties of the nonlinearmedium, phasematching
is automatically attained for all conceivable single-mode fibers (orwaveguides), as long as the fourwaves are
characterized by the same dispersion relation, at generation frequencies (ws and wi) thatmatch those of the
pumps (w1 and w2), according to w w=s 1 and w w=i 2. This symmetry is broken in the presence of self- and/or
cross-phasemodulation(SPM-/CPM) effects or if the fourwaves involve different polarizations and/or
transversemodes leading to slight offsets from w w=s 1 and w w=i 2, thus facilitating experimental
discrimination of theCP-SFWMphotons from scattered pumpphotons. The automatic phasematching
represents a considerable advantage as for any given optical fiber it becomes possible to freely choose the pump
frequencies and thus also directly determine the generation frequencies, according to particular needs. Second,
aswe show in detail below, unlike the case of standard SFWM forwhich factorability can be accomplished under
highly restrictive group velocitymatching conditions, involving certain specific combinations of frequencies, in
the case of CP-SFWMfactorability is accomplished for any phasematched source design, as long as the nonlinear
medium length exceeds a certain threshold. Automatic phasematching and automatic factorability indeed
become a powerful combination in photon-pair source design. Third, we show below that whenmaking one of
the two pumps nearlymonochromatic and if the nonlinearmedium length exceeds a certain threshold, CP-
SFWMalso permits the generation of photon pairs for which one of the two photons can be characterized by an
ultranarrowbandwidth, without resorting to the use of optical cavities.

2. Theory of counter-propagating SFWM

While all conclusions reached in this paper could apply to bothwaveguide and fiber sources, henceforthwe refer
to the nonlinearmedium as ‘fiber’with the understanding that it could equally refer to awaveguide. Photon-pair
generation experiments based on the process of SFWMdemonstrated to date involve fourwaves, i.e. pump 1,
pump 2, signal, and idler, which propagate along thefiber in the same direction, see for example [5–8]. Here, we
propose a SFWMscheme inwhich the pumpfields counter-propagate, i.e. they are launched into the fiber from
opposite ends. In such a SFWM interaction, a photon from the pump at frequency w1 and traveling in the
forward direction, together with and a photon from the pump at frequency w2 traveling in the backward
direction, are annihilated giving rise to the emission of a counterpropagating photon pair, which is a
consequence of energy andmomentum conservation constraints. The generated pair is comprised of a
backward-propagating signal photon at frequency ws and a forward-propagating idler photon at frequency wi.
The described interaction is illustrated infigure 1.

2.1. The two-photon state
In this sectionwe describe the two-photon state for theCP-SFWMprocess in a c( )3 medium.Wewill initially
write down expressions for the two-photon state which permit each of the fourwaves to propagate in different
transverse and polarizationmodes, where w( )k1 , w( )k2 , w( )ks , and w( )ki represent the frequency-dependent
wavenumbers for each of the fourwaves: pump 1(1), pump 2(2), signal(s), and idler(i). Later in the paper wewill
concentrate our discussion on the case where all four waves are co-polarized and involve the same transverse
mode so that w w w w w= = = º( ) ( ) ( ) ( ) ( )k k k k ks i1 2 . Throughout this paper, while the pump 1 and the idler
waves are forward-propagating, the pump 2 and signal waves are backward propagating; we adopt a sign
convention forwhich all wavenumbers are positive, with explicit signs appearing in accordance to the direction
of propagation.
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We start from the interactionHamiltonian governing SFWMprocesses, given by

òc=
+ + - -ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ( )( ) ( ) ( ) ( ) ( )�H t E t E t E t E tr r r r r

3

4
d , , , , , 1o s i

3 3
1 2

where the integration is carried out over the portion of the nonlinearmedium forwhich the pump fields are
temporally and spatially overlapped, c( )3 is the third-order nonlinear susceptibility, and �o is the vacuum
electrical permittivity. In equation (1), the subscripts (+)/(−) refer to the positive frequency /negative frequency
parts of the electric field operators. In our analysis, we assume that the two pumps can bewell-described by
classical fields, i.e. no longer operators, of the form

ò wa w w wl -n n n n
+

o
ˆ ( ) ( ) ( ) [ ( ( ) )] ( )( )
E t A f x y t k zr, , d exp i , 2B

with n = 1, 2 for the two pumps and nA represents thefield amplitude. a wno( ) is the spectral envelope (the
meaning of the signs±is defined below), and n ( )f x y, is the transverse spatial field distribution, which is
normalized so that ò ò =n∣ ( )∣f x y x y, d d 12 and is approximated to be frequency-independent within the pump
bandwidth.

The quantized signal and idler fields are expressed as

åd w w w= -m m m
+

oℓˆ ( ) ( ) [ ( ( ) )] ( ) ˆ ( ) ( )( )
E t k f x y t k z a kr, i , exp i , 3

k

B

with m = s i, and d p=k L2 Q themode spacing, written in terms of the quantization length LQ. Function
wℓ ( ) is given as follows

w
w

p w
=ℓ ( )

( )
( )

�
�
n

, 4
o

2

in terms of the (linear) refractive index of the nonlinearmedium w( )n and of Planckʼs constant � . In
equation (3), moˆ ( )a k is the annihilation operator (themeaning of the signs±is defined below), and m ( )f x y,
represents the transverse spatial distribution of the field, which is also normalized as the corresponding pump
functions, and is assumed to be frequency-independent within the bandwidth of signal and idlermodes.

Note that in equations (2) and (3) the- + signs, in front of the propagation constant w( )k and the
corresponding subscripts+ - in the annihilation operators and the pump spectral envelopes, indicate optical
fields propagating along thefiber in the forward/backward directions.

Following a standard perturbative approach [29] and our treatment in reference [30], it can be shown that
the two-photon state produced byCP-SFWMcan bewritten as hYñ = ñ ñ + Yñ∣ ∣ ∣ ∣0 0s i 2, in terms of the two-
photon component

Figure 1. (a) Schematic of theCP-SFWMprocess. The gaussian-shaped pumps are represented in solid red (pump 1) and solid green
(pump2), while the generatedCP-SFWMphotons are indicated in dashed red (signal) and dashed green (idler); arrowheads indicate
the directions of propagation for the fourwaves. (b)Energy level diagramof the process. (c)Phasematching diagram. The solid black
lines represent the signal and idler frequencies that fulfil phasematching, as a function of w1 and for w2 fixed at the particular value
w p m= ( )c2 0.532 m2 .

3

New J. Phys. 18 (2016) 103026 JMonroy-Ruz et al



ååYñ = ñ ñ- +ℓ ℓ∣ ( ) ( ) ( ) ˆ ( ) ˆ ( ) ∣ ∣ ( )† †k k F k k a k a k, 0 0 , 5
k k
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and the constant η, which is related to the conversion efficiency and is given by

h p d
c

= ( ) ( )
( )�
�

k A A Lfi 2
3

4
, 6o

3

1 2 eff

where L is thefiber length and feff is the spatial overlap integral between the fourfields given by

ò ò= ( ) ( ) ( ) ( ) ( )* *f x yf x y f x y f x y f x yd d , , , , . 7s ieff 1 2

In equation (5) wº ( )k ks s s is the propagation constant for the backward-propagating signalmode, and
wº ( )k ki i i is the propagation constant for the forward-propagating idlermode; -ˆ ( )†a ks represents the creation

operator for the backward-propagating signalmode, while +ˆ ( )†a ki represents the creation operator for the
forward-propagating idlermode. ( )F k k,s i is the joint amplitude function, which can bewritten in terms of
frequencies rather thanwave numbers, inwhich case it is referred to as the joint spectral amplitude (JSA), and is
expressed as w w( )F ,s i .

In our analysis wefirst consider a source configuration inwhich both pumps are pulsed. In this case, the JSA
function w w( )F ,P s i can be shown to be given by

òw w wa w a w w w= + - D k wt
+ -( ) ( ) ( ) ( )⎡

⎣⎢
⎤
⎦⎥F

L
k, d sinc

2
e e , 8P s si 1 2 i

i iL
2

where a w+( )1 represents the pump spectral envelope for the forward-propagating pump, a w-( )2 represents the
pump spectral envelope for the backward-propagating pump, and τ represents the time of arrival difference
between the two pumppulses at their respective ends of the fiber. Note that τ can be controlled externally with a
relative delay between the two pumps; in particular, t = 0 implies that the pumppulses corresponding to
pumps 1 and 2 arrive at the same time at the two ends of the fiber. Equation (8) is expressed in terms of the phase
mismatch function w w wD º D ( )k k , ,s i , and the function k k w w wº ( ), ,s i defined as

w w w w w w fD = - + - - + +( ) ( ) ( ) ( ) ( )k k k k k , 9s i s s i i1 2 NL

k w w w w w w= + + - + +( ) ( ) ( ) ( ) ( )k k k k , 10s i s s i i1 2

where fNL is a nonlinear phase shift derived fromSPMandCPM (see below for further discussion and for
expressions). Note that the energy conservation constraint is already included in the resulting joint amplitude.

Let us now consider a pumps configuration defined as the limit where the backward-propagating pump
wave becomesmonochromatic at frequency wcw, inwhich case the corresponding electric field can be expressed
as w w= - ++ ( ) ( ) [ ( ( ) )]( )E t af x y t k zr, , exp icw cw cw2 with a thefield amplitude, while the forward-propagating
pump remains broadband; we refer to this as themixed pumps configuration. In this case, the JSA function
becomes

w w a w w w= + - D k
+( ) ( ) ( )⎡

⎣⎢
⎤
⎦⎥F

L
k, sinc

2
e , 11M s s cw Mi i

i L
M2

where w wD º D ( )k k ,M M s i and k k w wº ( ),M M s i are defined as

w w w w w w fD = + - - - + +( ) ( ) ( ) ( ) ( )k k k k k , 12M s i cw cw s s i i1 2 NL

k w w w w w w= + - + + +( ) ( ) ( ) ( ) ( )k k k k . 13M s i cw cw s s i i1 2

The nonlinear phase shift FNL, appearing in equation (9) (for the pulsed pumps case), can be been shown to
be given as follows [9, 31]

g g g g g g g gF = - - + - - + -( ) ( ) ( )P P2 2 2 2 2 2 , 14s i s iNL 1 21 1 1 1 2 12 2 2 2

where P1 andP2 represent the peak powers for pumps 1 and 2 (related, for pumpswithGaussian spectra, as
s p=n n n [ ]P p R2 with the average pumppowers pν, whereR is the repetition frequency and sn is the

corresponding bandwidth). The nonlinear phase shift FNL, appearing in equation (12) (for themixed pumps
case) is given by equation (14), with the substitution lP p2 2.

The coefficients g1 and g2 result fromSPMof the two pumps, and are given, with n = 1, 2 by

g
c w

=n
n

n

n
( )

( )

�

f

c n

3

4
. 15

3 0
eff

0
2 2

In equation (15), the refractive index wºn n( )n n 0 and the spatial overlap integral ò òºn
n∣ ( )∣f x y f x yd d ,eff

4

(where the integral is carried out over the transverse dimensions of the fiber) are defined in terms of the carrier
frequency wn

0 for pump-mode ν [32].
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In contrast, coefficients gmn (n = 1, 2 and m = s i1, 2, , ) correspond to theCPMcontributions that result
from the dependence of the refractive index experienced bywaveμ, with m = s i1, 2, , , on the pump intensities
(n = 1, 2; note that CPMof the signal/idler photons on the pumps as well as SPMof the signal and idler waves
are small effects whichwe neglect). These coefficients are given by

g
c w

=mn
m

mn

m n
( )

( )

�
f

c n n

3

4
, 16

3 0
eff

0
2

where wºm n m n( )n n, ,
0 is defined in terms of the central frequency wm n,

0 for each of the four participating fields,

and ò òºmn
m n∣ ( )∣ ∣ ( )∣f x y f x y f x yd d , ,eff

2 2 is the two-mode spatial overlap integral (note that =mn nmf feff eff ).

2.2. Expressions for the emittedflux
In designing two-photon sources, it is helpful to be able to estimate the source brightness in terms of all relevant
experimental parameters. Expressions for the emitted flux for co-propagating and co-polarized SFWM in
single-mode fibers have been reported by us previously [30].

The number of photon pairs generated per second, or source brightness, is given by

å y y= á ñ- -∣ ˆ ( ) ˆ ( ) ∣ ( )†N R a k a k , 17
k

s s2 2

where y ñ∣ 2 is defined in equation (5) andR is the pump repetition rate (for the pulsed pump in themixed pumps
case, and assumed to be equal for both pumps in the pulsed pumps case); note that the brightness in equation (17)
can likewise be expressed in terms of the idler annihilation operator. From this equationwe have derived
expressions for the number of photon pairs generated per second for the two pump configurations described
above, which are represented by NP and NM , respectively. In the analysis we assume that the pulsed pumpfields
have a gaussian spectral envelope

a w
p s

w w

s
= -

-
m

m

m

m
( )

( )
( )

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

2
exp , 18

1 4

1 4

0 2

2

where wm
0 and sm (with m = 1, 2) are the central pump frequency and the pump bandwidth for the two pumps,

respectively. Note that the function a wm ( ) has been normalized so that ò w a w =m∣ ( )d 12 .
Substituting the two-photon state, equation (5), into equation (17)while appropriately turning sums into

integrals in the limit d lk 0, it can be shown that NP is given by

ò ò
g

p w w s s
w w w w w w= ( ) ∣ ( ) ( )N

n n c L p p

R
h F

2
d d , , , 19P s i s i P s i

5
1 2

2 2 2
1 2

3
1
0

2
0

1 2

2

where wº ( )n n1 1 1
0 ( wº ( )n n2 2 2

0 ), c is the speed of light in the vacuum, L is the fiber length, np and sn (with
n = 1, 2) are the average power and bandwidth of the two pumps, respectively, w w( )F ,P s i is the JSA given in the
equation (8), and w w( )h ,s i is a function defined as

w w
w w

w
w w

w
=

¢ ¢( ) ( )
( )

( )
( )

( )h
k

n

k

n
, , 20s i

s s s

s s

i i i

i i
2 2

where w¢m m( )k denotes the frequency derivate of the propagation constant wm m( )k , and γ is the SFWMnonlinear
coefficient given by

g
c w w

= ( )
( )

�
f

c n n

3

4
, 21

3
1
0

2
0

eff

0
2

1 2

in terms of the third-order nonlinear susceptibility, c( )3 , the electric permittivity of free space, �0, and the spatial
overlap integral feff defined in equation (7). Note that in our analysis we have assumed that the transverse electric
field distributions for the various fibermodes depend onlyweakly on the frequency, so that γ has been regarded
as a constant, and taken out of the integral, as in equation (19).

Similarly, it can be shown that for themixed pumps case the number of photon pairs generated per second,
NM , is given by

ò ò
g

p w w s
w w w w w w= ( ) ∣ ( ) ( )N

n n c L p p
h F

2
d d , , , 22M s i s i M s i

11 2
1 2

2 2 2
1 2

3 2
1
0

2

2

where p1 andσ represent the average power and bandwidth of the pulsed pump, respectively; p2 is the power of
themonochromatic pumpwave; w w( )F ,M s i is the JSA given in the equation (11); w w( )h ,s i is given by
equation (20) and γ is defined according to equation (21).
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2.3. Phasematching properties and SFWM-pumpdiscrimination
In order for theCP-SFWMprocess to exist, linearmomentummust be conservedwhich is equivalent to a
phasematching conditionD =k 0 for the pulsed pumps case, orD =k 0M for themixed pumps case (note that
since in general all four waves are polychromatic, these phasematching conditions are fulfilled exactly for
specific frequencies regarded as ‘central’ for eachwave). It is straightforward to verify from equations (9) and
(12) that if all fourwaves propagate in the same transverse and polarizationmode, then phasematching is always
attained, provided that the nonlinear term fNL is negligible, at frequencies satisfying the following relationships:
w w= s1 and w w= i2 . This is a remarkable property of CP-SFWM: phasematching is fulfilled automatically, for
an arbitrary single-mode fiber, using frequency non-degenerate pumps centered at w1 and w2 so as to generate a
backward-propagating signal photonwith frequency w w=s 1pairedwith a forward-propagating idler photon
with frequency w w=i 2. In other words, basic phasematching properties (i.e. the determination of emission
SFWMfrequencies as a function of pump frequencies), become decoupled from thefiber dispersion and are in
fact identical for all conceivable single-mode fibers. Note that a particular case of the scenario above is that for
which the pumps are frequency-degenerate which in fact leads to all fourwaves being frequency degenerate.
Also, note that a possible source of noise inCP-SFWM is spontaneous Brillouin scattering of the pump fields,
whichwould appear in the same frequencies and directions of propagation as the generated photons [32].

Infigure 1(c)wehave plotted theD =k 0 contour (solid black straight lines), i.e. the signal and idler
frequencies which satisfy perfect phasematching, as a function of the pump frequency w1, while w2 remainsfixed
at w p m= c2 0.532 m2 . Note that this diagram is ‘universal’, in the sense that it applies to all conceivable single-
modefibers.While afixed pump 2 frequency leads to an equallyfixed idler frequency, since w w=i 2, there is a
linear dependence between the remaining two frequencies, as w w=s 1. Note also that the intersection of the two
straight lines corresponds to the degenerate pumps case, for which w w p m= = c2 0.532 m1 2 . In particular, in
thefigure 1(c) the red vertical line corresponds to w p m= c2 0.820 m1 , so that its intersectionwith theD =k 0
contour indicates that perfect phasematching occurs for w p m= c2 0.820 ms and w p m= c2 0.532 mi . A
different choice offixed pump 2 frequencywould simply lead to a vertically displaced horizontal tuning curve
for the idler photon. Let us emphasize that the automatic phasematching observed for CP-SFWM is achromatic
in the sense that it is attained for any choice of w1 and w2 (leading to w w=s 1 and w w= )i 2 , regardless of the
specific underlying fiber dispersion. This opens awealth of possibilities for the implementation of photon-pair
sources in opticalfibers.

Note that if the nonlinear term fNL is non-zero, the symmetry between each pair of counterpropagating
pump and generated SFWMphoton is broken; in principle, this could be useful in order to slightly offset the
generation frequencies from the pump frequencies so as to simplify the experimental discrimination of signal
and idler photons from scattered pumpphotons. Likewise, this symmetry can be brokenwith cross-polarized
SFWMprocesses of the kind xyxy or xxyy in brirefringent fibers.However, for experimental conditions regarded
as typical (conventional fibers and typical values of pumppower and/or typical birefringence values) the
resulting offset tends to be insufficient in practice for theeffective discrimination between SFWMphoton pairs
and pumpphotons.

Another interesting possibility is for the fourwaves to propagate in different transversemodes (in a few-
mode ormulti-mode fiber), likewise leading to an offset of the generation frequencies from the pump
frequencies. Thus, let us discuss the case of CP-SFWM implemented in a few-mode opticalfiber [33, 34] leading
to an intermodal process; thismeans allowing some of thewaves involved in the SFWMprocess to travel in
higher-order transversemodes. As an example, if the forward propagating pump travels in the fundamentalfiber
mode and the signal photon travels in a certain higher-ordermodeX, while the backward-propagating pump
mode travels in the same higher-ordermodeX and the idler photon travels in the fundamentalmode, then
perfect phasematchingwill occur for signal and idler frequencies that are shifted from those of the pumps.
Specifically, this will result in a signal photonwith frequency w d+1 and in an idler photonwith frequency
w d-2 , with a frequency offset δwhich depends on the dispersion relations of the twomodes; note that while
the frequency offsets are equal (opposite in sign), the resultingwavelength offsets will differ between signal and
idler. Importantly, as the order ofmodeX increases, δ also increases. In table 1we summarize the emission
wavelengths and the resultingwavelength offsets that result from intermodal CP-SFWM in a step-index fiber
(with numerical aperture =NA 0.3 and core radius r=2 μm) that supports three higher-ordermodes, for the
case inwhich the pumpwavelengths are 820 nm (forward propagating pump) and 532 nm (backward
propagating pump).

We point out that while we have verified that the conclusions reached in this paper with respect to
factorability and ultra-narrowband single photon generation are unaffected by the use of the intermodal CP-
SFWMprocess described above for signal/idler-pumps discrimination, for simplicity in the rest of the paper we
concentrate on aCP-SFWMprocess which utilizes a single transversemode.

6

New J. Phys. 18 (2016) 103026 JMonroy-Ruz et al



2.4. Closed analytical expressions for the JSA and the emittedflux
In this sectionwe show that under certain approximations it becomes possible to derive analytical expressions,
in closed form, for both the JSA and for the emitted flux. Specifically, these approximations involve: (i)writing
the propagation constant w( )k , for each of the four interacting fields, as afirst-order Taylor expansion around
the frequencies for which perfect phasematching is obtained, and (ii) assuming that the function w w( )h ,s i (see
equation (20)) varies slowlywithin the spectral range of interest, so thatwe can regard it as a constantwhen
evaluating the integrals in equations (19) and (22) in the section 2.2. Note that these approximations are no
longer valid for large spectral spreads of the signal and idler frequencies around the frequencies which yield
perfect phasematching.

For the pulsed pumps case (assumed to beGaussian in spectrum, see equation (18)), under the
approximationsmentioned above, and using the integral formof the sinc function

ò x= x

-
( ) ( )xsinc

1

2
d e , 23x

1

1
i

the integral in equation (8) can be carried out analytically resulting in the approximate expression for the JSA
n n a n n f n n=( ) ( ) ( )f , , ,P s i P s i P s i

lin , where a n n( ),P s i is determined by the two pumpwaves and is given by

a n n
n n
s s

= -
+
+

( ) ( ) ( )
⎡
⎣⎢

⎤
⎦⎥, exp , 24P s i

s i
2

1
2

2
2

while f n n( ),P s i is determined both by the pumpwaves and the properties of the fiber, and has the form

f = -
+ L

+ +
- L

-( ) [ ] ( )⎜ ⎟ ⎜ ⎟
⎡
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2 2

given in terms of the variable x, and parametersB andΛ, defined as

n n= + ( )x T T , 26s s i i

s s
s s

=
+ ( )B

t
, 271

2
2
2

12 1 2

t tL = +( ) ( )
t

1
2 , 28

12
12

where ( )erf . denotes the error function, n w w= -m m m
0 are detuning variables (m = )s i, , andTs,Ti, t12, and t12

are defined in table 2; τwas defined in the context of equation (8). Note that here wm
0 (with m = s i1, 2, , )

represent the central frequencies of the fourwaves involved . The definitions provided in tables 2 correspond to
temporal variables; tij terms represent transit time differences through the fiber betweenwaves i and j, while tij
terms represent transit time sums through thefiber betweenwaves i and j. In conventional fibers, with a length of
a few cm, tij is on the order of tenths of nanoseconds, while tij is on the order of few picoseconds.

Table 1.Emissionwavelengths (ls and li) andwavelength offsets ( lD s
and lD i) for intermodal CP-SFWM, for different choices of excitedmode
X, in a few-mode step-index fiberwith numerical aperture =NA 0.3 and
core radius r=2 μm.

FibermodeX ls (nm) lD s(nm) li (nm) lD i(nm)

LP11 816.1 −3.9 533.7 1.7
LP21 811.1 −8.9 535.8 3.8
LP02 809.7 −10.3 536.4 4.4

Table 2.Temporal parameters in analytical expressions for two cases. Left: general case, for
which the fourwaves could involve different polarizations and propagationmodes, right: iden-
tical polarizations and propagationmodes for all fourwaves; note that the definition

w¢ º ¢m m m( )k k 0 is used throughout.

= -
s

s s+
T t ts s2 12

1
2

1
2

2
2 t= -

s
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2
2 =

s
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T ts 12
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2

2
2 = -

s

s s+
T ti 12

1
2
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2

2
2

= ¢ + ¢( )t L k k12 1 2 t = ¢ - ¢( )L k k12 1 2 = ¢ - ¢( )t L k k12 1 2 t = ¢ - ¢( )L k k12 1 2

= ¢ + ¢( )t L k ks s1 1 t = ¢ - ¢( )L k ks s1 1 = ¢t Lk2s1 1 t = 0s1
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In the left-hand side of table 2we have shown the various temporal parameters which define the two-
photon state in the general casewhere the fourwavesmay involve different polarizations and transversemodes.
In the right-hand side table, we have specialized this to the case forwhich all fourwaves involve the same
polarization and the same transversemode.

Note that for a sufficiently large time of arrival difference between the two pumppulses at the opposite fiber
ends τ, leading to the condition L 1� , the pumppulses overlap temporally outside the fiber and the process
ceases to occur. If this time of arrival difference τ vanishes, the value ofΛ tends to be small since it is given by the
ratio of the transit time difference through thefiber of the two pumps, divided by transit time sum; thus, oftenwe
may approximate L » 0.

Note that the assumptions (see first paragraph of this section) used for the derivation of the approximate
expression for the JSA n n( )f ,P s i

lin are no longer valid for sufficiently large signal and idler spectral spreads

around the central SFWM frequencies ws
0 and wi

0. It is worth pointing out that for the specific source designs
presented in this paper (see figures 3 and 5, below) these approximations arewell justified: plots of the joint
spectrumderived from the expression n n∣ ( )∣f ,P s i

lin 2 are in excellent agreementwith plots derived fromdirect
numerical integration, without resorting to approximations, according to equation (8).

The same assumptions considered in the derivation of n n( )f ,P s i
lin can be applied in equation (19) in order to

obtain a closed analytical expression of the emission rate, which leads to

g w w
w w

=
¢ + ¢ ¢ + ¢

+ L
+

- L( )
( )( )
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⎡
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erf
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2 2
. 29P
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2 2

1 2
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1 2 1
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2
0

From the above equation, using the property that the ( )xerf function saturates to a value of 1 for 2x 2 (or to
a value of−1 for -1x 2), wemay show that there exists an effective fiber length Leff given by

s s
s s

=
+

+ L ¢ + ¢
=

D + D

+ L ¢ + ¢( )( ) ( )( )
( )L

k k

t t

k k

4 2

1

4 2

1
, 30eff

1
2

2
2

1 2 1 2

1
2

2
2

1 2

where sD ºt 11 1 and sD ºt 12 2 represent the temporal durations for pump 1 and pump 2, respectively, with
the property that increasing the fiber length beyond =L Leff does not lead to any further increase of the source
brightness; thus, Leff corresponds to themaximum interaction length. Physically, Leff represents the length of
fiber over which the two pumps overlap temporally. Note thatmaking one of the two pumps approach the
continuouswave (monochromatic) limit implies that the interaction length can increase without limit, which as
is described below is helpful for the optimization of the source brightness.

Let us consider a case where both pumps have a non-zero bandwidth; we can thenwrite
s= + ( )B r t1 1 12 , or = + DB r t t1 1 12, (with s sºr 1

2
2
2). Thus, ifDt1 ismuch smaller than the sumof

the transit times through the fiber of the two pumppulses, represented by t12, thenB can be a small number.
Essentially, a smallB implies that since the interaction length ismuch shorter than the fiber length, the two-
photon state is free from any effects related to the air-fiber andfiber-air interfaces. In this lB 0 limit, which
can always be reached through a combination of pulsed pumpswith a sufficiently small pump duration together
with a sufficiently longfiber, the phasematching function becomes f l -( ) ( )x B x2expP

2 2 . This limit is
interesting for applications where the suppression of the sinc-function sidelobes is beneficial, as is the case for
the generation of very high-quality factorable states.

Let us now consider the case where the pumpbandwidths are highly unbalanced. In particular, the
condition s s1 2� leads to s» ( )B t1 12 1 , while similarly s s2 1� leads to s» ( )B t1 12 2 . In the limit where the
smaller of the two bandwidths becomes very small, the value ofB becomes very large, inwhich case itmay be
shown that the phasematching function becomes f l( ) ( )x xsinc 2P . In practice, for values 2B 1.0, the
phasematching function is alreadywell described by a sinc function; in this regime, unlike for the smallB limit,
thefiber edges play an essential role.

The behavior of the function f∣ ( )∣xP as parameterB varies is summarized infigure 2.On the one hand, panel
(a) illustrates the smallB limit (in this casewith =B 0.01), inwhich the function f∣ ( )∣xP becomes theGaussian
function -( )B xexp 2 2 . On the other hand, panel (c) illustrates the largeB limit (in this case withB=1) inwhich
the function f∣ ( )∣xP becomes ( )xsinc 2 . In both of these panels, the f∣ ( )∣xP function as given by equation (25)
is plottedwith a solid black line, while theGaussian or sinc limiting behaviors are plottedwith a dashed yellow
line. It becomes evident that there is an excellent agreement between these. In panel (b)we show an intermediate
case with =B 0.2 for which f∣ ( )∣xP is not well described neither by aGaussian nor by a sinc function.

Let us now analyze how the functions a n n( ),P s i and f n n( ),P s i define the joint spectral intensity of CP-
SFWMphoton pairs. It is clear from equations (24) and (25) that while a n n( ),P s i is oriented at- n45 in w w{ },s i

spacewith awidth s s+1
2

2
2 , the orientation andwidth of f n n( ),P s i depend, both, on pump and fiber

parameters. The orientation angle of the function f n n( ),P s i is given by
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T
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2
2
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with the last equality valid for the case where all four waves have the same polarization and transversemode.
Note that s s . 02

2
1
2 , so that qsi is constrained as q n- -0 90si , i.e. the function f n n( ),P s i has contour curves

with non-negative slope, including the two limiting cases of horizontal and vertical orientations. As regards the
width of the function f n n( ),P s i , it is helpful to consider separately the limiting cases for largeBwhere this
function is well described by ( )xsinc 2 , and for smallB for which this function becomes -( )B xexp 2 2 . In thefirst
case, thewidth is inversely proportional to the fiber length L (since bothTs andTi in n n= +x T Ts s i i are linear in
L). In the second case, thewidth no longer depends on L (sinceB is proportional to -L 1while x is proportional to
L). Thus, as the fiber length is increased thewidth of the function f n n( ),P s i diminishes, eventually the shape
turningGaussian at which point thewidth and shape of the function f n n( ),P s i no longer responds to further
increasing L. Thus, increasing L beyond the length defined by non-zero temporal overlap between the two pump
pulses, Leff, has no effect neither on theflux nor on the joint spectral intensity.

The discussion of the previous paragraph is illustrated infigure 3, inwhichwe show the two-photon state
obtained for a step-index fiber (with core radius m=r 1.5 m and numerical aperture =NA 0.13)with length
L=1 cm and twodifferent pulsed pumps configurations: (i) s = 0.01 THz1 and s = 0.03THz2 , panels (a)–(d),
for which =B 1.07; (ii) s s= = 0.011 2 THz, panels (e)–(h), for which =B 1.43. In this block offigures, the
function a n n( ),P s i is shown in thefirst column, the function f n n( ),P s i in the second column, the JSI
a n n f n n∣ ( ) ( )∣, ,P s i P s i

2 in the third column, while the numerically calculated JSI is shown in the fourth column.
Note that while the third column corresponds to the analytical joint spectral intensity, defined as n n∣ ( )∣f ,P s i

lin 2,
the fourth columnwas obtained by numerical integration of equation (8)without resorting to the linear
approximation of theDk function. It is evident that the approximate analytical results agree extremely well with
the numerically calculated ones. Also, consistent with equation (31), while the orientation of the function
f n n( ),P s i is 45◦ for equal pumpbandwidths, it approaches a vertical orientation for unequal pumpbanwidths
s s>2 1, and becomes fully vertical for s s2 1� . Similarly, (not shown in thefigure), for s s<2 1 the function
f n n( ),P s i approaches a horizontal orientationwhile it becomes fully horizontal for s s2 1� .

For highly unbalanced pumpbandwidths, and in particular when one of the two pumps approaches the
monochromatic limit, the interaction length between the two pumppulses increases, in principle, without limit.
Such amixed pumps configuration could have important implications for the ability to reach high emission
rates.

Following a similar treatment as used above for the pulsed pumps case, it can be shown that the JSA function
given in equation (11) can be expressed, under the linearDk approximation, as

n n a n n f n n=( ) ( ) ( )f , , ,M s i M s i M s i
lin , with the pump envelope function a n n( ),M s i and the phasematching

function f n n( ),M s i given by

a n n
n n

s
= -

+( ) ( ) ( )
⎡
⎣⎢

⎤
⎦⎥, exp , 32M s i

s i
2

2

f n n t n n n n= + +( ) ( ) [ ] ( )⎡
⎣⎢

⎤
⎦⎥t t t, sinc

1

2
exp i i , 33M s i s s i i s s i i1 1 1 1

whereσ is the bandwidth of the pulsed pump and t s1 , t s1 , and t i1 are defined in table 2. Likewise, it can be
demonstrated by integration of equation (22), and under the linear phasemismatch approximation, that the
emittedflux can be expressed as

Figure 2.Absolute value of the phasematching function (see equation (25)) for different values of parameterB, with L = -0.006 85
(corresponding to pumps at 532 and 820 nmwith t = 0, assuming a step-index fiberwith core radius m=r 1.5 m and numerical
aperture =NA 0.13).
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where the dependence on the various experimental parameters of the emission rate appears explicitly.
Particularly, it can be seen, as expected, that NM increases linearly with thefiber length, indicating that the
interaction length is not capped as it is for the pulsed pumps configuration.

Infigures 3(i)–(l)we illustrate the two-photon state obtained for a CP-SFWMsource in themixed pumps
configuration, for whichwe have assumed the same parameters as infigures 3(e)–(h), except that pump 2 is now
monochromatic (s l 02 ); in this case the contours of the phasematching function become horizontal. Note
that for themixed pumps configuration the dependence of the spectral envelope function and the
phasematching function on the parameters of the source become decoupled; i.e., thewidth of a n n( ),M s i is
proportional to the pulsed pumpbandwidth (with an orientation at- n45 ), while thewidth of f n n( ),M s i

depends onfiber properties, including its length L and dispersion (with a horizontal orientation) .
Infigure 4we illustrate the behavior of the source brightness as a function of the fiber length, for both the

pulsed andmixed pumps cases. In panels (a)–(c)we show this behavior for three different values of s2 (1THz,
0.05 THz, and 0.005 THz, respectively), and for a fixed value s = 11 THz,where a vertical dashed line indicates
the effective length Leff; itmay be appreciated that the brightness reaches a plateau at »L Leff . In panel (d)we
show the corresponding behavior for themixed pumps scheme, for s = 1THz; note that in this case the
brightness grows linearly with Lwithout saturating to afixed value.

Figure 3. Spectral correlation properties of CP-SFWMtwo-photon states, assuming a step index fiber (core radius m=r 1.5 m and
=NA 0.13)with L=1 cm. (a)–(d)Pulsed pumps casewith s = 0.01 THz1 and s = 0.03 THz2 . (e)–(h)Pulsed pump case with

s s= = 0.01 THz1 2 . (i)–(l)Mixed pump casewith s = 0.01 THz. a w w( ),s i is the pump envelope function (given by equation (24)
for the pulsed case and by equation (32) for themixed case). f w w( ),s i is the phasematching function (given by equation (25) for the
pulsed case and by equation (33) for themixed case). w w( )f ,s i

lin represents the JSI under the linearDk approximation. w w( )F ,s i
represents the JSIwithout resorting to approximations (calculated numerically from equation (8) for the pulsed case and from
equation (11) for themixed case).
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3. Factorable two-photon states generation

In this sectionwewill show that when restricting our discussion to a co-polarizedCP-SFWMprocess
implemented in afiberwhich supports a single transversemode, a factorable state can be obtained for any
phasematched configuration, with frequencies such that w w= s1 and w w= i2 .

In a SFWMprocess for which all four waves propagate in the same polarization/transverse spatialmode,
quantum entanglement can reside only in the spectral degree of freedom. Spectral correlation properties are
then governed by the joint spectrumof the two-photon state, see equations (8) and (11). In order to facilitate the
analysis we focus here on the analytical expressions of the JSA based on the linear approximation ofDk, which
were introduced in section 2.4, n n( )f ,P s i

lin and n n( )f ,M s i
lin for the pulsed andmixed pumps configurations,

respectively. In both cases, as discussed above, spectral correlations are determined by the relative orientation
and spectral widths of the pump envelope and phasematching functions, see equations (24) and (25) for the
pulsed case, and equations (32) and (33) for themixed case. The two-photon states becomes factorable if the JSA
function is separable, i.e. if it can bewritten as w w w w=( ) ( ) ( )f S I,s i s s i i .

Let us consider the limit lB 0, which as discussed in section 2.4 can always be attained for a combination
of sufficiently short pumppulses and for a sufficiently long fiber. In this case, the joint spectral intensity
n n a n n f n nº( ) ∣ ( ) ( )∣I , , ,s i P s i P s i

2 may be expressed as

n n n n
n n
s s

n
s

n
s

µ - + -
+
+

= - -

( ) [ ( ) ] ( )

( )

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

I B T T, exp 2 exp
2

exp
2

exp
2

. 35

s i s s i i
s i

s i

2 2
2

1
2

2
2

2

1
2

2

2
2

Note that in order towrite down the last equality, we have used the expressions forB,Ts, andTi valid for the
case where all fourwaves propagate in the same polarization/transverse spatialmode (see table 2). This result,
valid in the limit lB 0, is remarkable on a number of fronts: (i) the two-photon state is automatically
factorable, in addition to the underlying phasematching condition being attained automatically, as already
discussed in section 2.3, (ii) the state becomes completely independent offiber parameters and only depends on
the two pumps, and (iii) the bandwidth of the signal photon is identical to the pump 1 bandwidth, while the
bandwidth of the idler photon is identical to the pump 2 bandwidth.

By direct plotting of the f ( )xP function, wemay verify that for 1B 0.14 this function is essentially identical
to -( )B xexp ;2 2 this corresponds to the regime under which equation (35) is valid. This leads to the following
factorability condition

s s
s s
+

¢ + ¢
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D + D
¢ + ¢

- -( )
( )

( ) ( )2L
k k

t t

k k

0.14 0.14
. 36
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2
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2

1 2 1 2

1
1
2

2
2

1 2

Equation (36) provides a threshold fiber length (which decreases as the pump temporal durations are
reduced) so that if thefiber length exceeds this threshold the two-photon state is always factorable. It is
interesting to compare the factorabilityfiber length threshold (see equation (36))with themaximum interaction
length Leff (see equation (30)). Note that these two expressions are essentially identical; indeed, if thefiber
becomes longer than the distance overwhich the two pumppulses are temporally overlapped, two effects are
observed: (i) the brightness can no longer increase, and (ii) edge effects related to the air-fused silica interfaces

Figure 4.Emitted flux as a function of thefiber length. (a)–(c)Pulsed pumps configurations. Vertical dashed lines indicate the effective
length Leff (with the Leff values shown). (d)Mixed pumps configuration. The bluemarkers were obtained fromnumerical evaluation
of equations (19) and (22) for the pulsed andmixed pumps configuration, respectively, while the black solid lines are the analytical
results obtained under the linear phasematching approximation, according to equations (29) and (34).
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disappear. Thus, as L is increased, the brightness plateaus at =L Leff and the state reaches theGaussian
factorable form as described by equation (35). Note that for ps pumps the values of Leff tend to be in the range of
mm to cmmaking this scheme for factorable photon-pair generation highly practical.

As one or both of the pumpbandwidths are reduced, the effective length Leff increases without limit. Thus,
in the limit where either s l 01 and/or s l 02 , the interaction length can become arbitrarily large, in practice
limited by thefiber length, and equations (35) and (36)derived above for the pulsed pumps case can no longer be
applied. Thus, let us now consider the question of factorability in themixed pumps case, for which pump 2 is
monochromatic, and pump 1 has a certain non-zero bandwidthσ. In this case, the joint spectral intensity
n n a n n f n nº( ) ∣ ( ) ( )∣I , , ,s i M s i M s i

2 may be expressed as
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Note that in order towrite down the last equality, we have used the expressions for t s1 and t i1 valid for the
case where all fourwaves propagate in the same polarization/transverse spatialmode (see table 2). This JSI
n n( )I ,s i then becomes factorable if thewidth of the sinc function, along ni, ismuch less than thewidth of the

exponential function, along n n+s i.With the help of theGaussian approximation » -G( ) ( )x xsinc exp 2 (with
G = 0.193), we then arrive at the following condition for factorability

D
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whichmakes it clear that for a sufficiently longfiber, the two-photon state becomes factorable; note that in this
equation sD º -t 1. Note that because the sinc function depends only on the frequency ni, the sidelobes
associatedwith this functionwill run parallel to the ni axis andwill not, therefore, introduce correlations (this
observation also serves to justify the use of theGaussian approximation). In this limit, wemay set n l 0i in the
exponential term, so that the joint spectral intensity can be approximated as
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It is remarkable that for, both, the pulsed pumps and themixed pumps configurations a factorable state can
always be reached for a sufficiently longfiber. This behavior is illustrated infigure 5 inwhich, for the same pump
configurations as infigure 3, we show the synthesis of the joint spectral intensity forfiber lengths longer than the
threshold lengths in equations (36) and (38) for the pulsed andmixed pumps configurations, respectively. It is
evident in thisfigure that the three source scenarios lead to factorable two-photon states. It is worth emphasizing
thatwhile in the case of standard (co-propagating) SFWM, factorability demands specific combinations offiber
length and pumpbandwidth [9], for CP-SFWMthe factorability conditions are considerablymore relaxed and
in fact all phasematched configurations can lead to a factorable state for a sufficient fiber length.

In order to quantify the degree of factorability of CP-SFWMphoton pairs, we evaluate the heralded-single-
photon state purity rº =( ˆ )p KTr 1s

2 in terms of the Schmidt numberK, where r̂s is the reduced density
operator for the signal state [10]. Thus, an ideal factorable two-photon state is related to an ideal single-photon
purity r =( ˆ )Tr 1s

2 . Infigure 6(a)we show the numerically calculated purity as a function of s2, while s1 and L
remain fixed; results are shown for four different fiber lengths, as indicated, and l m= 0.820 m1 ,
l m= 0.532 m2 , and s = 0.01 THz1 . Squaremarkers in the figure correspond to the purity obtained for the
mixed pump case, for which s l 02 , see equation (11). Figure 6(b) shows the number of photon pairs emitted
per second for the same parameters assumed in panel (a). Panels (c) and (d) are similar to (a) and (b), except for a
larger value of the pump 1 bandwidth: s = 11 THz. From these plots the following two behaviors as the fiber
length is increased become apparent: (i) the two-photon state becomes increasingly factorable, and (ii) the
source brightness reaches a plateau. In addition, increasing s2 leads to a reduced effective length Leff, thus
boosting the purity, for a given value of L. Note from figures 6(a) and (c) that while the use of very shortfibers
would lead to the need for large pumpbandwidths in order to attain factorability, with correspondingly larger
SPM-/CPMeffects, there is no need in practice to use such short, e.g. sub-mm, fibers which are in addition
comparativelymore challenging to handle.

Infigure 6(c)wehave indicatedwith the letters e, f, and g three particular choices of parameters, which lead
to the joint spectra shown infigures 6(e)–(g). Note that for all of these three parameter choices, the two-photon
state is essentially factorable.

As a final remark in this section, it is worthmentioning that in the intermodal CP-SFWMconfiguration,
discussed at the end of section 2.3, the factorability of the two-photon state is preserved as comparedwith the

12

New J. Phys. 18 (2016) 103026 JMonroy-Ruz et al



case inwhich all interacting fields propagate in the fundamentalmode, regardless of the higher-order fibermode
employed. The emission rate, however,may be compromised as the order of the excitedmode used increases,
due to a reduced overlap between the interactingmodes.

4.Ultra-narrowband single-photonwavepacket generation

Atom–photon interfaces rely on the ability of a single photon to be absorbed by a single atom; such interfaces
involvematching both frequency and bandwidth of the single photons to the intended atomic transition in a
given atomic species.While such electronic transitions typically have bandwidths in the region ofMHz, the
natural bandwidths of SPDC and SFWMsources tend to bemany orders ofmagnitude greater. A possible
solution is to place the nonlinearmedium responsible for photon-pair generation inside a high-finesse cavity so
as to restrict the emission bandwidth as needed, without adversely affecting the source brightness [16].

Let us observe from equation (35) that in the pulsed pumps configuration, specifically in the regime >L Leff

for which the JSI becomes factorable and fullyGaussian, the emission bandwidths are ‘inherited’ from the
pumps: i.e s s=s 1 and s s=i 2. This is a reflection of the achromatic phasematching forwhich the fiber
dispersion experienced by the signal and pump 1, on the one hand, and by the idler and pump 2, on the other
hand, cancel each other out so that the two-photon state is determined exclusively by the pumps. As one or both
of the pumpbandwidths approach themonochromatic limit, the effective length Leff becomes infinite and the
expression in equation (35) for the two photon state is no longer valid.

Let us then consider the possibility of generating photon pairs in themixed pumps configuration, for which
at least one of the two pumps exhibits a very narrow bandwidth. For a sufficient fiber length (obeying
equation (38)), the joint spectral intensity is given by equation (39). Let us observe that in this regime, the
bandwidth of the signal photon ‘inherits’ the bandwidth of pump 1, i.e. s s=s , as occurs for the pulsed pumps
case. However, note that the bandwidth of the idler photon si is determined not by the pumps but solely byfiber
properties, andwith the help of theGaussian approximation, can be expressed as

Figure 5. Synthesis of the joint spectral intensity (obtainedwith the same fiber as assumed in figure 3) for: (a)–(d)Pulsed pumps case
with s = 0.01 THz1 and s = 0.03 THz2 , =L 0.12 m. (e)–(h)Pulsed pump casewith s s= = 0.01 THz1 2 , =L 0.12 m. (i)–(l)
Mixed pump case with s = 0.01 THz, and L=1 m. The specificfiber lengths considered here are longer than the threshold lengths
in equations (36) and (38) for the pulsed andmixed pumps configurations, respectively.
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It is important to point out a key difference with respect to standard co-propagating SFWM.While for
standard SFWM, the spectral properties are determined by reciprocal group velocity difference coefficients of the
form ¢ - ¢( )L k kp , for CP-SFWMthe spectral properties are replaced by reciprocal group velocity sum

coefficients of the form ¢ + ¢ = ¢ + ¢( ) ( )L k k L k ki1 1 2 . These reciprocal group velocity sum coefficients correspond
to the sumof transit times for the pump 1 and pump 2waves through the fiber, as opposed to transit time
differences as appear in the case of standard SFWM.The fact that the sum coefficients tend to be orders of
magnitude greater than the difference counterparts has a profound implication: because the idler bandwidth is
inversely proportional to this reciprocal group velocity sum (difference) coefficient for CP (standard) SFWM,
the resulting bandwidths are orders ofmagnitude smaller than for a comparable standard co-propagating
source, as a direct consequence of theCP geometry. In practice this leads to the possibility of obtaining extremely
small idler bandwidths for reasonable lengths offiber.

Suppose that a bandwidth dw is desired for the idler photon.We can then show from equation (40) that the
fiber lengthwhich guarantees such a bandwidth is given by

Figure 6. (a)Purity versus s2 as a function offiber lengthwith s = 0.01 THz1 . (b)Photon-pair emission rate versus s2 as a function of
fiber length. The average power of the two pumps is 50 mW. (c) and (d) Similar to (a) and (b), but with s = 1THz1 . (e)–(g) Joint
spectral intensity for the s2 values indicated as e, f, g on panel (c) and L=1 cm. For all three cases, the numerically evaluated purity
reaches very close to unity.
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Infigure 7(a)we show results of the emission bandwidth si versus fiber length for aCP-SFWMsource based
on themixed pumps scheme, with a pulsed pumpof 0.42 nmbandwidth centered at 0.820 μm (compatible with
a picosecondTi:Sapphire laser), and amonochromatic pump at 0.532 μm.The red squares represent results
obtained numerically from equation (11), while the black solid line corresponds to those obtained analytically
from equation (40). As indicated in thefigure, forfiber lengths longer than∼36 m, (idler) single-photon
wavepackets with bandwidths narrower than 30MHz can be generated. In contrast, the bandwidth of the signal
photon essentially equals that of the pump, i.e. 1.18 THz (FWHM). In panel (b) of thisfigure we have shown the
corresponding purity of a single idler photon versus fiber length, when heralded by the detection of a signal
photon.

The source scheme described above is suitable for applications inwhich it suffices for only one of the two
photons in each pair to be narrow-band.Note that if both pumps aremonochromatic it becomes possible, for a
sufficiently long fiber, to generate photon pairs characterized by ultra-narrowband signal and idlermodes (this
case has not been analyzed in detail in this paper).

As has been emphasised, an important feature of CP-SFWM is the resulting phasematching achromaticity.
Thus, for a given fiber it becomes possible to tune the emission frequencies as controlled by the pump
frequencies (with w w=s 1 and w w=i 2), while preserving the emission bandwidths. This is a significant
advantage in designing two-photon state sources. For example, a sourcemay be designed so that one of the
emissionmodes corresponds to a specific atomic transition (in frequency and bandwidth), while the other is
tuned to the telecommunications band [15].

5. Conclusions

In this paper we have described theoretically a new kind of SFWMprocess, inwhich the two pumpwaves
counter-propagate in the c( )3 nonlinearmedium, and inwhich the generated signal and idler photons likewise
counter-propagate; we have referred to this process as CP-SFWM.Wehave shown that in this process,
phasematching is attained automatically regardless of the specific dispersion characteristics, leading to a signal
frequencywhich equals the frequency of the pumpwave traveling in the opposite direction, and likewise for the
idler photon and the second pumpwave.We have discussed that while a number of experimental aspects can
slightly offset each of the generation frequencies with respect to the frequency of the corresponding pumpwave,
to aid discrimination of the SFWMphotons from the pumps, the use of an intermodal CP-SFWMprocess seems
to be themost practical alternative.

We have presented two versions of theCP-SFWMprocess: in thefirst, whichwe refer to as the pulsed pumps
configuration, both pumps are assumed to be pulsedwhile in the second, whichwe refer to as themixed pumps
configuration, one pump is assumed pulsed and the remaining pump is assumed to bemonochromatic.We
have shown that in both of these cases, for an arbitrary phasematched source design, the state can always reach
factorability for a sufficiently long fiber (orwaveguide).Moreover, the threshold length for factorability tends to

Figure 7. Idler emission bandwidth (FWHMin intensity) (a) and purity (b) as function offiber length L, obtained fromCP-SFWM in
themixed pumps configuration. Results were evaluated assuming s = 1THz.Note frompanel (b) that the two-photon state becomes
essentially factorable forfiber lengths greater than the threshold length given in equation (38), which in this case is around 0.5 mm.
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be in the range of a fewmm to a few cm,making the resulting automatic phasematching and automatic
factorability highly practical.We have also shown that in themixed pumps configuration, the idler photon,
which is emitted in counter-propagation to themonochromatic pumpwave, can bemade compatible in
bandwidthwith electronic transitions in atoms. The latter eliminates the need for optical cavities, and is a direct
consequence of theCP geometry forwhich the emission bandwidths are governed by the transit time sums
through the nonlinearmedium, rather than transit time differences as in the case of standard SFWM.

Wepoint out that of the three properties discussed above, i.e. automatic phasematching, automatic
factorability, and ultra-narrow single-photon bandwidths, at least the first two are amenable to integrated optics
implementations, since they involvemodest threshold lengths.We believe that this new type of SFWMprocess,
inwhich thewaves involved counter-propagate in the nonlinearmedium,may prove useful in future
implementations offiber- orwaveguide-based photon-pair sources with engineered spatio-temporal properties.
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