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Abstract: We present a source of near-infrared photon pairs based
on the process of spontaneous parametric downconversion (SPDC), for
which the joint signal-idler quantum state is designed to be factorable
in the frequency-time and in the transverse position-momentum degrees
of freedom. Our technique is based on the use of a broadband pump
and vector group velocity matching between the pump, signal, and idler
waves. We show experimentally that a source based on this technique
can be configured for the generation of: i) pure heralded single photons,
and ii) polarization-entangled photon pairs which are free from spectral
correlations, in both cases without resorting to spectral filtering. While
critical for many applications in optical quantum information processing,
such a source has not previously been demonstrated.
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1. Introduction

Non-classical light has been exploited for a number of purposes, ranging from testing quan-
tum nonlocality [1,2], to various quantum-enhanced technologies including quantum computa-
tion [3–5], quantum teleportation [6,7], and quantum cryptography [8,9]. The nonlinear optical
process of spontaneous parametric downconversion (SPDC) is commonly used to generate pho-
ton pairs for these applications. The fact that the daughter photons are produced in pairs leads to
signal-idler photon-number correlations, so that detection of a single photon in the signal mode
heralds, under ideal conditions, the presence of exactly one idler photon at a known position in
space and time [10]. This can be generalized, so that the detection of n signal photons can her-
ald the presence of an idler n-photon Fock state [11,12]. Furthermore, as is well known, SPDC
sources can be configured to generate photon pairs which are entangled in various discrete de-
grees of freedom such as polarization [13], time-bin [14], and orbital angular momentum [15].
In this paper we address the question of how to engineer the biphoton quantum state to be
factorable in continuous degrees of freedom so as to attain two important goals: i) the gener-
ation of spectrally-pure heralded single photons, and ii) the generation of photon pairs which
are entangled in a discrete photonic variable (polarization in our case), but which are otherwise
unentangled.

Unfortunately, SPDC often results in undesired correlations in frequency-time and transverse
momentum-position between the two photons in a given pair [16, 17], which as is well known
leads to heralded single photons which are not in a quantum-mechanically pure state [18]. Such
heralded single photons, which are described as a statistical mixture of the allowed spectral
and spatial modes, cannot interfere with other single photons, and therefore cannot be used
as the basis for scalable quantum information processing. Additionally, polarization-entangled
photon pairs can range from factorable to highly-entangled in frequency-time and in trans-
verse position-momentum. The presence of the latter type of entanglement can introduce dis-
tinguishing information which can degrade the performance of quantum information schemes
employing multiple such sources. Typical sources rely on spectral and spatial filtering in order
to achieve the two goals stated in the previous paragraph, at the cost of a significant reduction
in source brightness, as well as a reduction of SPDC bandwidth. Here we report on a source
geometry which can attain both of these goals, depending on whether we use one or two non-
linear crystals, crucially, without the need for spectral filtering. An added bonus is that since no
spectral filtering is used, the photon pairs exhibit a considerably greater bandwidth than typical
SPDC sources. This could be important, for example, if used for quantum optical coherence
tomography [19]. This engineered source makes use of vector group-velocity matching, and a
broadband pump.

In this work we have employed four independent methods to characterize our single-crystal
source [20] and to verify that we have attained our two goals stated above: i) mapping the
joint spectrum through frequency-to-time conversion in an optical fiber, ii) mapping the joint
spectrum using a novel variation of Fourier transform spectroscopy, iii) measuring the (mode-
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dependent) g(2) correlations in one arm of the source, and iv) measuring the Hong-Ou-Mandel
(HOM) interference between heralded single photons from two independent single-crystal
sources [21]. Additionally, in a fifth measurement, we directly verify the presence of polar-
ization entanglement for a two-crystal version of our source.

2. Engineering spectral and spatial unentanglement

The properties of SPDC are defined by conservation of energy and momentum. A narrow pump
bandwidth, for example, leads to strict frequency anti-correlation between the signal and idler
photons due to conservation of energy. Additionally, correlations due to momentum conserva-
tion in the longitudinal direction depend on the crystal length, and in the transverse direction on
the degree of pump focusing. Taken together, these constraints define the joint amplitude func-
tion; engineering a factorable source depends critically on the crystal and pump parameters.

To describe the spectral correlations present between pairs of photons, we use the joint spec-
tral intensity, a probability distribution in the frequency space of the two-photon state. We are
concerned with whether this joint spectrum is separable or correlated, that is to say, whether
it describes a two-photon state that can be written as a separable product state of two single-
photon states, or an entangled state which cannot.

(a) ns

n
i

(b) ns

n
i

(c) ns

n
i

Fig. 1. Simplified model of JSI with frequency correlations due to conservation of energy.
Spectral filters reduce correlation; shown in (a) no filtering, (b) filter width equal to the
pump bandwidth, and (c) filter width equal to 1

5 of the pump bandwidth.

We quantify the degree of correlation using the Schmidt decomposition [22, 23], which al-
lows a pure state of a composite system AB to be decomposed into a sum over products of
orthonormal states of A and B:

fA,B = ∑
i

√
λigA,igB,i, (1)

where the Schmidt coefficients
√

λi satisfy the normalization condition ∑i λi = 1. The Schmidt
coefficients can be used to define the Schmidt number K, which can be described as the effective
number of populated eigenmodes:

K =
1

∑i λ 2
i
. (2)

The inverse Schmidt number 1/K is also equal to the purity P of a heralded single-photon, and
the visibility V in a two-source HOM interferometer [24].

2.1. Spectrally filtered source

As mentioned in the introduction, an ideal photon pair source for scalable optical quantum
information processing should not exhibit spectral or spatial correlations between signal and
idler photons. While narrow filters can be used to reduce or even effectively eliminate these
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correlations, this solution has a significant downside: if the photons are highly correlated, the
required filters are so narrow that they block the majority of the photon pairs available. This can
be easily seen from a plot of the joint spectrum in Fig. 1(a): an uncorrelated subset of the joint
spectrum will contain only a small fraction of the total photon pair flux (in the theoretical case
of a maximally correlated joint spectrum, the fraction is actually zero). Another way to see this
is through the Schmidt decomposition: the best filtered, uncorrelated collection mode one can
hope for is the most populated Schmidt mode. If the Schmidt number is large, there are many
significantly populated Schmidt modes, and any one of them will contain only a small fraction
of the total intensity.

Instead of employing spectral filtering to “fix” a highly-correlated source, it would be de-
sirable to produce a joint spectrum which is already intrinsically uncorrelated. The following
section describes how this can be achieved by manipulating the SPDC phase-matching condi-
tions, using one of the family of “engineered source” techniques [16, 17, 24–26].

2.2. Factorable joint spectrum

(a) ns

n
i

(b) ns

n
i

(c) ns

n
i

(d) ns

n
i

Fig. 2. Joint spectral intensity correlations arising from the various components of the joint
spectral intensity, including (a) energy envelope, (b) transverse momentum, (c) longitudinal
momentum, and (d) the overall JSI formed by the product of these. This demonstrates
how energy and momentum conservation constraints can compensate each other to produce
an approximately factorable joint spectrum without spectral filtering. Also note that the
longitudinal phase-matching sinc lobes (in c) may be supressed.

The simplified picture presented in Fig. 1 only accounts for conservation of energy between
the pump and the SPDC photons, and in particular does not take into consideration phase-
matching effects in the crystal. We also considered only the joint spectral intensity, whereas
correlations can also be present in the joint spectral phase, which is critical for the case of
a chirped pump. Finally, we entirely neglected spatial correlations, another important source
of non-separability. In practice, spatial correlations are generally eliminated by collecting into
single-mode fiber. However, this has the same effect as spectral filtering in reducing source
brightness, so ideally we wish to reduce spatial correlations before collection and to carefully
choose a collection mode which is highly populated. Moreover, there can be cross-correlations
between spatial and spectral modes [24].

To engineer a source of factorable photons, one must calculate the dependence of frequency
and spatial correlations on the physical parameters of the SPDC source. The state produced by
SPDC can be expressed in terms of creation operators, the signal and idler wavevectors~ks and
~ki, and a constant η as

|ψ〉= |vac〉+η

∫
d~ks

∫
d~kiF(~ks,~ki)â†

s (~ks)â
†
i (
~ki) |vac〉 . (3)

Here, F is the joint two-photon amplitude (JTPA), which can be written as

F(~ks,~ki) = `(~ks)`(~ki)α(ωs +ωi)φ(~ks,~ki), (4)
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where `(~ks) and `(~ki) are separable terms, α(ω) is the pump spectral amplitude (assumed to be
Gaussian), and φ(~ks,~ki) is the phase-matching function. In an ideal situation, all the terms in the
JTPA would be separable, so that we would be able to write F(~ks,~ki) = S(~ks)I(~ki) for specific
functions S(~ks) and I(~ks), each of which depend exclusively on the variables which correspond
to one of the two photons. Under these circumstances, no correlations exist between the signal
and idler photons, and the source is therefore factorable, with each photon individually in a
pure state. Unfortunately, α(ωs +ωi) and φ(~ks,~ki) are not in general factorable. However, by
adjusting the appropriate parameters of the system, these terms can be made approximately
separable. To see how, first consider the full form of the phase-matching function [24],

φ(~ks,~ki) = exp
[
−

w2
0

4
(k2

x + k2
y)

]
sinc

[
L
2

∆k
]

exp

[
i
k2

x + k2
y

2kp
z0

]
exp
[

i
L
2
(kp + kz + ky tanρ0)

]
(5)

∆k = kp− kz−
k2

x + k2
y

2kp
+ ky tanρ0 (6)

where L is the length of the downconversion crystal, kp =
∣∣∣~kp

∣∣∣ is the pump wavenumber, w0

is the pump beam waist, z0 is the distance from the pump beam waist to the center of the
downconversion crystal, ρ0 is the spatial walkoff angle, and kx, ky, and kz are the components
of the sum of the signal and idler wavevectors,~k = ~ks +~ki.

Table 1. Conditions for SPDC separability [24,27] where k′ is the reciprocal group velocity
( dk

dω
), wo and σ are the pump beam waist and bandwidth respectively, L is the crystal length,

θs and θi are the signal and idler emission angles inside the crystal, Φmax is the maximum
angular spread about the signal and idler emission angles, and ρ0 is the walkoff angle.
Condition (4) assumes frequency-degenerate collection, while (1) - (3) apply generally.

(1)

{
k′S = k′p cosθs

k′i = k′p cosθi

(2)
w2

o

0.193L2 =− tanθs tanθi

(3) σ � 2
0.193L(k′p− k′s cosθs)

(4) Φ
2
max
(
w2

0 +0.193ρ
2
0 L2). 1

k2 sin2
θ0

Transforming this into spherical coordinates {ωs,θs,φs,ωi,θi,φi} and Taylor-expanding to
first order provides a set of constraints to satisfy in order for non-separable cross terms to
vanish, and thus for the source to be factorable [24]. These constraints are detailed in Table
1; they can be described as follows: (1) choosing the collection angles θs and θi so that the
longitudinal component of the signal and idler group velocities match the pump group velocity,
(2) selecting the pump beam waist and crystal length according to the collection angles, (3)
using a pump bandwidth σ larger than a threshold value which is inversely proportional to
crystal length, and (4) collecting photons in a small angular spread around θs and θi. We refer
to condition (1) as vector group velocity matching. The conservation constraints of the pump
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Fig. 3. Predicted dependence of joint spectrum on downconversion emission angle (indi-
cated in the upper right corner of each plot). The optimally separable case occurs when
the pump group velocity matches the longitudinal component of the signal and idler group
velocities.

envelope and phase-matching function are shown graphically in Fig. 2, demonstrating how a
nearly separable joint spectrum can be obtained by appropriate selection of source parameters.

2.3. The engineered source

We have applied these conditions to type-I degenerate SPDC using a β -barium borate (BBO)
crystal, pumped with a beam centered at 405-nm, produced by frequency doubling the beam
from an ultrafast titanium-sapphire laser (35-fs pulse duration, 76-MHz repetition rate, and
centered at 810-nm). The wavelength is chosen based on the availability of ultrafast lasers and
efficient single-photon detectors, compared to telecom wavelengths where avalanche photo-
diode (APD) detector efficiencies are much lower (commercial APD quantum efficiencies for
1550 nm and 810 nm are ∼ 25% and ∼ 60%, respectively). The optimal external collection
angle is found to be the angle that vector matches the group velocity of the pump and daughter
photons (θs0 =−θi0 ≈ 16◦ external to the SPDC crystal in our source), as shown in Fig. 3. The
additional constraints of Table 1 could be satisfied by choosing a crystal length of L = 300 µm
and a pump beam waist of w0 = 23.15 µm [27]. Rather than this theoretically optimal waist
size, we use a quasi-optimal and more practical pump beam waist of w0 = 60 µm. Due to
astigmatism and ellipticity in the pump (i.e., the output of the frequency doubling crystal), the
larger beam waist is more symmetric and thus actually leads to a higher purity than attempting
a tighter focus where these effects are more pronounced. Note that our signal and idler pho-
tons are collected using single-mode fibers; while the fulfilment of the conditions in Table 1
means that our photon pairs are close to factorable in the spatial and spectral degrees of free-
dom, collection into single-mode fibers eliminates by design any remaining spatial or cross
spectral-spatial entanglement. This leaves frequency as the only degree of freedom in which
entanglement can reside; we employ broad bandwidth 80-nm FWHM band-pass Semrock fil-
ters to exclude scattered pump photons without significantly impacting the SPDC spectrum. For
comparison, in some measurements we also employ narrower 20-nm filters to partially filter the
joint spectrum. Using a 100-mW pump beam, we observe a detected pair collection rate into
single-mode fiber of ∼ 10,000 pairs per second.

3. Measurement: pure-state heralded single photons

The purity of heralded single photons can be characterized using several methods which either
reconstruct the joint spectral intensity or provide a proxy to heralded single-photon purity [20].
Our one-crystal source designed to yield pure-state heralded single photons was discussed in
the previous section and is sketched in Fig. 4(a). The four techniques which we have used to
characterize this source are shown in Figs. 4(b)-(e), with experimental details explained in the
figure caption. These measurement techniques are discussed below, with particular attention to
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a novel extension of Fourier transform spectroscopy.
Two-dimensional Fourier transform spectroscopy can be used to measure frequency corre-

lations in the time domain [28]; our experimental implementation is shown in Fig. 4(b). This
exploits a self-interference effect and the property that the extremely short (∼femtosecond) time
regime of the electric field oscillations is easily accessible by an optical delay in a bulk opti-
cal medium. Our novel extension of this technique allows us to characterize the joint spectrum
with a one-dimensional rather than two-dimensional scan. Under the assumption that the JSI is
approximately Gaussian (which is valid for our source), the correlations between the signal and
idler are manifested in the diagonal dimensions of the Gaussian ellipse. So, taking the Fourier
transform of a 1D scan along the ts + ti axis yields the projection of the 2D spectrum along the
fs + fi axis, as shown in Fig. 5. If we model the joint frequency spectrum as a 2D Gaussian
ellipse, the relevant parameter for spectral correlation is the ratio of the peak widths along the
fs + fi and fs− fi axes, σd/σa. The parameters σd and σa can be extracted directly from the
1D scan described above, characterizing the Gaussian ellipse

f (νs,νi) = Aexp
[
−
(
ν

2
s +ν

2
i
)( 1

4σ2
d
+

1
4σ2

a

)
−2νsνi

(
1

4σ2
a
− 1

4σ2
d

)]
.

(7)

We can determine the heralded single-photon purity P (or equivalently, the inverse Schmidt
number 1/K) directly from a Gaussian ellipse. Applying a change of variables and solving for
σa and σd in terms of σ and σ f , we can determine the purity as

P =

√
1−
(

r−1
r+1

)2

, (8)

where r ≡ σ2
d /σ2

a . Our measurements of the joint spectral intensity implies a purity of 0.88±
0.02 without spectral filtering and 0.99±0.01 with 20nm filters, as shown in Fig. 6.

Another promising measurement technique uses dispersion in an optical fiber, which permits
the indirect measurement of frequency through the times of arrival [29]; see Fig. 4(c). The
experimental setup used is shown in Fig. 4(b). Our fiber (Nufern 780HP) has dispersion of
approximately -120 ps/nm per km of fiber, for light near 810 nm. For example, in our 400 m of
fiber, a photon with a wavelength of 809 nm will be delayed by approximately 50 ps compared
to a photon at 810 nm. Thus, measuring the arrival time of a photon determines its wavelength,
assuming that the relative delay exceeds the detector timing jitter. This measurement yields
a purity of 0.87± 0.03 without spectral filtering, and 0.995± 0.04 with 20-nm filters. Our
experimental data is shown in Fig. 6(b).

It is important to note that neither of the above measurements account for potential phase
correlations. These correlations will impact heralded single-photon purity, and can be meas-
ured with a two-source Hong-Ou-Mandel interferometer. Conveniently, a measurement of the
second-order correlation function in a single SPDC arm also allows us to obtain the number of
downconversion modes collected, and thus is an indirect measurement of correlation [30]. The
second-order correlation function is straightforward to measure with a Hanbury Brown-Twiss
interferometer, as shown in Fig. 4(d). This measurement is also useful for calibration of excess
dispersion in the pump, as shown in Fig. 7. A correlation function measurement implies a purity
of 0.66±0.02 without filtering and 1.02±0.02 with 20-nm filters.

Finally, the single-photon purity for the spectrally unfiltered case is confirmed through a two-
source Hong-Ou-Mandel interferometer [25], shown in Fig. 4(e). In this four-photon measure-
ment, the two sources are two orthogonally-oriented BBO crystals so that in each of the signal
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Fig. 4. Schematic diagrams of: (a) Source geometry and relevant parameters in our im-
plementation of the engineered source, used for all following measurements. The pump is
focused to a waist of w0 = 60µm. The signal and idler collection modes are oriented at
±16◦ with respect the pump axis and are characterized by a beamwaist of 55 µm); these
modes meet at the approximate center of the BBO crystal of length L = 300µm. The signal
and idler modes are collimated before passing through additional measurement-dependent
optics (e.g., waveplates and polarizers), and finally are collected into single-mode fiber
(note that the fiber-coupling optics are not shown). (b) Fiber spectroscopy. A half-wave
plate (HWP) and polarizing beamsplitter (PBS) are used to combine the signal and idler
modes into a 400-m length of single-mode fiber (SMF). A fiber beamsplitter delivers light
to two avalanche photodiodes (APD), which are analyzed by a time-to-digital converter
(TDC) together with a synchronization signal from the pump via a photodiode (PD). (c)
Two-dimensional Fourier spectroscopy. The common-path polarization interferometer uses
a half-wave plate to rotate light into the diagonal basis, followed by a birefringent quartz
plate to initially delay horizontally polarized light (H) relative to vertically polarized light
(V). Then, quartz wedges are used to variably delay V relative to H. Finally, another HWP
rotates back into the H/V basis and a polarizing beam splitter is used to pick off the H
component. Two of these polarization interferometers are used in coincidence to analyze
the joint spectrum. (d) Correlation function measurement. We measure g(2) in one arm
of SPDC using a Hanbury Brown-Twiss interferometer. (e) Two-source Hong-Ou-Mandel
interferometer. We herald the presence of one photon pair produced from each of two or-
thogonally oriented BBO crystals. A suppression of four-fold coincidence counts at zero
delay indicates the absence of which-crystal distinguishing information. A relative signal-
idler delay can be introduced by a pair of quartz wedges in one arm.
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Fig. 5. Sketch of the frequency-domain signal resulting from two-dimensional Fourier spec-
troscopy.
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Fig. 6. (a-c) Comparison of measurements of the engineered source joint spectrum with no
spectral filtering and an 8-nm bandwidth pump using (a) diagonal Fourier spectroscopy (b)
fiber spectroscopy and (c) a theoretical simulation showing ideal behavior. Corresponding
purities are (a) 0.88± 0.02, (b) 0.87± 0.03, and (c) 0.998. (d) Results from two-source
HOM with visibility 0.61± 0.05. This is in agreement with accompanying g(2) measure-
ments, which imply a maximum visibility of 0.66±0.02. The line shown is a Gaussian fit
to the data.

and idler arms there is one horizontally-polarized and one vertically-polarized photon. We pre-
pare two photons in the idler arm, which are to be interfered with each other, by triggering
on the detection of two corresponding photons in the idler arm. The two heralded photons in
the signal arm are temporally and spatially compensated, their polarizations are rotated from
horizontal-vertical to diagonal-antidiagonal using a halfwave plate before passing through a
polarizing beamsplitter in the H/V basis. A delay between the two idler photons can be intro-
duced by a pair of quartz wedges. In contrast to a typical Hong-Ou-Mandel measurement where
interference takes place between two spatial modes of a beamsplitter, here interference takes
place between two polarizations sharing the same (idler-photon) spatial mode. We observe a
visibility (or single-photon purity) of 0.61±0.05, shown in Fig. 6(d).

4. Measurement: polarization entanglement

An important advantage of this engineered source is the relative ease of employing it as a source
of polarization-entangled photons using a standard two-crystal geometry [31], as shown in Fig.
8. This method uses two identical but orthogonally oriented type-I SPDC crystals, such that
the first converts horizontally (H) polarized pump photons to pairs of vertically (V) polarized
photons, while the second takes V pump photons to H pairs. Thus, a diagonally polarized pump
ideally produces a maximally entangled polarization state. Note that the spatio-temporal engi-
neering discussed above in the context of the single-crystal source applies separately to each of
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Fig. 7. (a) Calculated relationship between g(2) for a source with K (effective) thermal
modes. (b) Measured values of inverse Schmidt number 1/K, measured from the correla-
tion function. This is equal to heralded single-photon purity or g(2)(0) - 1. The horizontal
axis shows a variable amount of group delay dispersion (GDD) applied to our pump using
a prism-pair compressor, controlling pump temporal chirp. A simple prediction based only
on second- and third-order dispersion is shown in blue.

(a) (b)

Fig. 8. (a) Diagram of the two-crystal scheme for polarization entanglement. We use a
diagonally polarized pump and two orthogonally oriented type-I SPDC crystals to produce
pairs of polarization-entangled photons. The crystal labels indicate the polarization of the
SPDC cone produced by each crystal. Due to the spatial separation of the two crystals, we
use walk-off in birefringent α-BBO to combine the photons into a single spatial mode. The
quartz plate and quartz wedges compensate for the temporal delay between the photons.
(b) Diagonal-diagonal coincidence counts as a function of phase offset between H and V,
demonstrating polarization correlation / anticorrelation.

the two crystals used in the two-crystal source. Indeed, all of the parameters of each of the two
crystals in the two-crystal source are identical to the parameters of the single-crystal source.

To produce a polarization-entangled state rather than a mixed state, there must be no way to
determine which crystal a particular photon was produced in. Distinguishing information may
be present spectrally, spatially, or temporally. Spectral distinguishability is taken care of almost
by default, as the two crystals are identical up to a 90◦ rotation and the spectral distribution of
SPDC is rotationally symmetric about the pump.

Spatially, our SPDC crystals have a center-to-center offset of 300 µm, which leads to a
300 µm× sin16◦ = 82.69µm lateral separation of the desired collection modes. Unless com-
pensated for, this separation makes it impossible to efficiently collect from both crystals. Fortu-
nately, the two crystals produce orthogonal polarizations, so a birefringent compensation crys-
tal can be chosen such that extraordinarily polarized photons will experience precisely enough
walk-off to be displaced onto the ordinarily polarized mode, thus “stitching” together the two
modes (see Fig. 8). In our source, this compensation can be achieved with a 0.952 mm thick-
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ness of α-BBO, cut with the optic axis at 45◦ to the front surface. In practice, we use 1 mm of
α-BBO and adjust the angle of the crystal slightly with respect to the incident light to fine-tune
the displacement.

Temporal distinguishability arises from geometrical and birefringent collection time differ-
ences between H and V photons, and is especially important given the femtosecond-scale co-
herence times of our source [32]. For temporal compensation, we use a quartz plate and a pair
of quartz wedges in the style of a Soleil-Babinet compensator. Here again we rely on bire-
fringence, but rather than transverse walk-off, the critical property is the optical path length
difference (and thus time delay) between ordinary and extraordinary polarization. This time
delay is optimized by measuring interferometric visibility as a function of quartz thickness, and
in our system can be set within a range of approximately ±300 fs as needed to compensate
time-of-arrival differences between the crystals. For our system, an additional time delay of ap-
proximately 50 fs is used to compensate the temporal walkoff introduced by the spatial-mode
stitching α-BBO crystals.

There are many approaches to detecting and quantifying entanglement, including Bell in-
equality violation, quantum state tomography, and a variety of entanglement witnesses [33,34].
In our case, we demonstrate that we have produced polarization entanglement by observing
correlation/anticorrelation in two mutually unbiased bases [35]. We observe visibilities of ap-
proximately 0.85 in the H/V basis and 0.75 in the D/A basis. Thus, the sum of mutually un-
biased bases exceeds the classical threshold of 1 and clearly demonstrates entanglement, but
falls short of the maximum of 2 for a maximally entangled state. The reduction in visibility
indicates that there remains some which-crystal distinguishing information, and the quality of
entanglement could be improved by more careful calibration and alignment. However, visibil-
ity is also limited (to at most 96%) by asymmetric polarization in type-I SPDC. This “Migdall
effect” arises because the daughter photons are ordinarily polarized, but ordinary polarization
is defined as perpendicular to both the optic axis of the crystal and the direction of propagation
of the photon, leading to a dependence on the azimuthal emission angle [36]. Unfortunately for
the engineered source, this effect is especially dramatic for large cone angles, and reaches a 12◦

deviation from vertical polarization for our 16◦ SPDC cone opening half-angle, resulting in a
4% reduction in fidelity with the maximally entangled state [37].

There are other methods for achieving entanglement in a discrete photonic variable. For
example, path entanglement has been demonstrated using the “rail-cross” scheme, in which
pumping one SPDC crystal from both sides creates two coherently superposed downconversion
paths [38, 39]. Two-photon and multi-photon entangled states have also been implemented by
pumping an SPDC crystal in two lateral locations, then recombining downconversion paths ac-
cording to polarization [40]. These non-polarization-based qubits would enable one to achieve
an even higher level of qubit entanglement than the polarization qubits of our current two-
crystal approach, while maintaining the spectral non-entanglement.

5. Heralding efficiency

Although, as discussed above, there are compelling reasons to optimize a source so as to ob-
tain a factorable joint spectrum, it is worth noting that a filtered, correlated (i.e. unengineered)
source can be more desirable in some cases. For example, it is possible to take advantage of
correlations to improve heralding efficiency (the probability of detecting an idler photon con-
ditioned on the detection of a signal photon, given by the coincidence detection rate divided
by the heralding single-channel detection rate). In the case where one-way heralding efficiency
is the critical parameter, we can improve heralding efficiency in the desired collection mode
by asymmetrically filtering only the complementary mode. It turns out that the unengineered
source achieves a higher heralding efficiency under both symmetric and asymmetric spectral

#228272 - $15.00 USD Received 2 Jan 2015; revised 10 Mar 2015; accepted 10 Mar 2015; published 18 Mar 2015 
© 2015 OSA 23 Mar 2015 | Vol. 23, No. 6 | DOI:10.1364/OE.23.007894 | OPTICS EXPRESS 7905 



0.2

0.6

1.0

pu
rit

y

50 100 150
filter bandwidth (nm)

0.2

0.6

1.0

he
ra

ld
in

g 
ef

fic
ie

nc
y

ηs
ηi

0.
99

8
1.

00
0

0.1

0.3

0.5

10 20 30 40
filter bandwidth (nm)

ηs
ηi

(a)

(b) (d)

(c)

Fig. 9. Calculated purity and heralding efficiency as a function of filter bandwidth with rect-
angular filters for both (a,b) correlated, unengineered source and (c,d) engineered source.
The solid lines show asymmetric collection into the signal and idler modes with filtering
applied only to the signal (heralding) photon, shown as solid black line, and applied only
to the idler (heralded) photon, shown as solid green line. The dashed lines show symmetric
collection with filtering applied to both modes.

filtering, at the cost of a lower heralded single-photon purity when compared to the engineered
source.

Results of theoretical calculations of heralding efficiency and heralded single-photon purity,
for the correlated and engineered source are shown in Fig. 9. In the figure we show plots of
the heralding efficiency and of the single photon purity vs filter bandwidth. The simulations
which form the basis for these plots were carried out relying on the theory in Ref. [24]. We
have considered three different filtering schemes, involving filtering applied: i) to the heralded
photon (shown as green solid curves, labeled as ηi), ii) to the heralding photon (shown as
black solid curves, labeled as ηs), and iii) symmetrically to both photons (shown as dashed
curves). Note that both asymmetric filtering schemes lead to the same purity vs filter bandwidth
curve, with values lower than those attained for symmetric filtering. In regard to the heralding
efficiency, asymmetric filtering of the heralding photon yields the best result, while in contrast,
asymmetric filtering of the heralded photon leads to a significantly poorer performance.
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6. Conclusions

Relying on a broadband pump and on vector group velocity matching in the SPDC process,
we have been able to attain the two important goals of generating: i) pure heralded single
photons, and ii) polarization-entangled photon pairs which are unentangled in all other degrees
of freedom. Because our source produces these two types of quantum state intrinsically, in
particular without the need for spectral filtering, the bandwidth of our source exceeds 20 nm.
We point out that SPDC-based photon pair sources not engineered for factorability typically
use filters narrower than 1 nm to achieve the same level of purity.

However, we have found that a trade-off exists between heralding efficiency and single-
photon purity. An unengineered source which exhibits strong signal-idler correlations can in
fact lead to a higher heralding efficiency as compared to our engineered source. Our source,
optimized for single-photon purity, has a heralding efficiency limited to about 40% (after sub-
tracting the effect of a non-ideal detector quantum efficiency). This could limit the useful-
ness of our source in applications where heralding efficiency is crucial, such as for on-demand
single-photon sources. In addition, SPDC waveguide sources [41–44] and telecom-wavelength
sources [26] have shown promising results, achieving higher count rates for a similar pu-
rity, with a higher heralding efficiency. These approaches appear promising for optical quan-
tum information applications, particularly with the increasing availability of efficient telecom-
wavelength detectors [45–47].

Nevertheless, our technique should prove useful in situations where optimized photon pairs
are required in the near-IR and/or in situations where polarization entanglement is required in
addition to an engineered spatio-temporal character.
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