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Abstract
We study the chronocyclic character, i.e. the joint temporal and spectral properties, of the
single-photon constituents of photon pairs generated by spontaneous parametric
downconversion. In particular we study how single-photon properties, including purity and
single-photon chirp, depend on photon-pair properties, including the type of signal–idler
spectral and correlations and the level of pump chirp.
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1. Introduction

Single photons constitute the most fundamental building
block of optical fields. Single photons are often described in
terms of a single optical mode described by an annihilation
operator â, i.e. as â†

|0〉, where |0〉 is the vacuum. However,
single photons emitted through actual physical processes are,
of course, wavepackets involving different optical frequencies
as well as different directions of propagation. A complete
understanding of single photons emitted under realistic
conditions therefore requires an in-depth study of their
multi-modal richness.

In this paper we concentrate our study on single
photons derived from photon pairs emitted through the
process of spontaneous parametric downconversion (SPDC)
in second-order nonlinear crystals. Likewise, we focus on the
spectral degree of freedom in the SPDC photon pairs. The
process of SPDC can be extremely versatile as the basis for
photon-pair source design; indeed, a careful selection of the
source configuration leads to the ability to widely select the
properties of the emitted photon pairs. Thus, for example,
photon-pair sources exhibiting entanglement in discrete
photonic degrees of freedom (such as polarization [1, 2] and
orbital angular momentum [3]), and alternatively exhibiting
entanglement in continuous degrees of freedom [4, 5] (such

as frequency/time [6], transverse momentum/position [7]),
have been demonstrated. In the specific case of the spectral
degree of freedom, photon-pair sources have been designed
and demonstrated with a large range of behaviors in terms
of the emission bandwidth (ranging from tens of MHz [8]
to hundreds of THz [10]) and in terms of the degree of
the entanglement (ranging from factorable [9] to highly
entangled [10]).

The detection of one of the two photons in a given SPDC
pair can herald the presence of its conjugate, an approach
often used as the basis for single-photon sources [11, 12].
Heralded single photons have been characterized in previous
works, for example through a measurement of the correspond-
ing Wigner function in the phase space formed by the position
and momentum electric field quadratures [13, 14]. In this
paper we are primarily interested in studying how the spatial
and temporal properties of the pump translate into specific
properties of the constituent single photons, in particular in
the time–frequency degree of freedom. Indeed, in a recent
work from our group, we have shown that pump chirp may be
used in order to control effectively the degree of entanglement
in SPDC photon pairs, and consequently control the purity
of the constituent single photons [15]. We have shown that,
if the source is designed so that in the absence of pump
chirp photon pairs are factorable, or equivalently so that the
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constituent single photons are pure [16], an arbitrary degree
of photon-pair entanglement, or single-photon purity, can be
attained by varying the level of pump chirp.

Besides the single-photon purity, in this paper we are
also interested in the chronocyclic character, i.e. in the joint
spectral–temporal properties, of the single photons. Specif-
ically, we are interested in studying how the chronocyclic
character of the pulse train associated with a broadband
pump defines the chronocyclic character of the emitted
single photons. While this is interesting from a fundamental
physics perspective, it is also important in the context of
quantum information processing (QIP) applications which
rely on single photons. Knowledge of the full multi-mode
structure of single photons is essential for the correct design
of specific QIP implementations. Indeed, an understanding
of, and the ability to control, these chronocyclic properties
are crucial for the correct mode matching of single photons
to other photonic modes in interferometric arrangements.
For example, both Hong–Ou–Mandel interference of single
photons from distinct sources, and homodyning of single
photons with a coherent state, depend crucially on the single-
photon chronocyclic character. Therefore, it is important to
understand how pump chirp, used as a tool for tailoring
the level of spectral entanglement present in SPDC photon
pairs, also determines the chronocyclic character of the single
photons which constitute each pair.

An ideal framework in which to study the single-
photon joint spectral–temporal properties is the single-photon
chronocyclic Wigner function (CWF). In this paper, we
study the relationships between the single-photon spectral
density matrix, the first-order degree of spectral and temporal
coherence, and the single-photon CWF. We study in particular
how the type of spectral correlations in the SPDC photon
pairs, together with the level of pump chirp, determine on the
one hand the purity and, on the other hand, the presence of
spectral–temporal correlations, or chirp, in the single photons.

2. SPDC photon pairs, and their constituent single
photons

In the spontaneous parametric downconversion process
(SPDC) an optical crystal with a second-order nonlinearity
is illuminated by a laser pump beam. Individual photons
from the pump beam may then be annihilated, leading
to the emission of photon pairs, where the two photons
in a given pair are typically referred to as signal and
idler. These photon pairs may be entangled in any of
the photonic degrees of freedom, including polarization,
time–frequency and transverse position–momentum. In this
paper we concentrate on the spectral degree of freedom;
specifically, we assume that appropriate spatial filtering on the
signal and idler modes is used so that only specific directions
of propagation are retained.

Following a standard perturbative approach, the two-
photon state for the SPDC process can be written as |9〉 =
|0〉+η|92〉, in terms of the two-photon component of the state
|92〉

|92〉 =

∫
dωs

∫
dωi f (ωs, ωi)|ωs〉|ωi〉, (1)

where η is related to the conversion efficiency, f (ωs, ωi) is the
joint spectral amplitude (JSA) function, |ωµ〉 = â†

µ(ω)|0〉with
µ = i, s and |0〉 represents the vacuum state.

The focus of this paper is on the properties of the single
photons which constitute each of the SPDC pairs. Specifically,
we are interested in studying how the single-photon properties
are determined by the photon-pair properties. Each of the
single photons in a given pair is completely characterized by
its respective density operator. For the specific case of the
signal mode, the density operator ρ̂s can be written as

ρ̂s = Tri(|9〉〈9|), (2)

where Tri represents a partial trace over the idler mode.
In terms of the JSA, the reduced density operator can be
expressed through its matrix elements as

ρs(ω1, ω2) ≡ 〈ω1|ρ̂s|ω2〉

=

∫
dω0 f (ω1, ω0)f

∗(ω2, ω0). (3)

The density matrix ρs(ω1, ω2) fully characterizes the
signal-mode single photons. Note that the normalization
condition on the density operator Tr(ρ̂s) = 1 is equivalent to
the normalization condition

∫
dωs

∫
dωi |f (ωs, ωi)|

2
= 1 for

the JSA function. For what follows, it is convenient to write
down the density matrix expressed in terms of diagonal ω and
off-diagonal ω′ frequency components, ρD(ω, ω′), where ω
and ω′ are related to ω1 and ω2 through ω1 = ω + ω

′/2 and
ω2 = ω − ω

′/2:

ρD
s (ω, ω

′) = ρs

(
ω +

ω′

2
, ω −

ω′

2

)
. (4)

An important property of the single photons is their
purity, quantified by

p ≡ Tr(ρ̂2) =

∫
dω1

∫
dω2 |ρs(ω1, ω2)|

2. (5)

Aside from the purity, in this paper we are interested
in the spectral and temporal properties of the single
photons. The Wigner distribution function applied to the
time-varying electric field provides a mathematical tool which
can represent classical light pulses in chronocyclic, i.e. in
time–frequency, space [17]. This leads to a representation
that shows intertwined temporal and spectral effects, aiding
a better comprehension of certain optical phenomena. In
the realm of quantum optics, it is convenient to study the
temporal and spectral properties of single photons through
the single-photon chronocyclic Wigner function [18]. Indeed,
while the density matrix contains complete information about
the single photons, in this paper we also use the single-photon
chronocyclic function (CWF) W(ω, t), because this leads
to a better direct appreciation of the temporal, as well
as spectral, properties of the single photons. In particular,
phase information which is absent from the absolute value
of the density matrix |ρs(ω1, ω2)| appears naturally in the
real-valued CWF. Certain spectral–temporal properties such
as single-photon chirp become more directly apparent in the
chronocyclic domain.

2
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The density matrix ρ(ω1, ω2) and the chronocyclic
Wigner function W(ω, t) are related to each other through a
Fourier transform, as follows:

W(ω, t) =
1

2π

∫
dω′ ρD

s (ω, ω
′)e−iω′t. (6)

Or, conversely,

ρD
s (ω, ω

′) =

∫
dt W(ω, t)eiω′t. (7)

It is known that integration of the CWF over the
time variable yields the single-photon spectral intensity or
single-photon spectrum (SPS) Iω(ω). Thus, we can show that
the SPS is closely related to the diagonal elements of the
density matrix, i.e.

Iω(ω) ≡
∫

dt W(ω, t) = ρs(ω, ω) = ρ
D
s (ω, 0). (8)

The function ρs(ω, ω) is then related to the ‘population of
each single-photon spectral component’, in other words to the
relative spectral intensity at each of the spectral components.
Normalization of Iω(ω), so that

∫
dω Iω(ω) = 1 is guaranteed

by the normalization of the density matrix, i.e. Tr(ρs) = 1.
The off-diagonal elements, or ‘coherences between different
spectral components’, which occur for ω′ 6= 0, then can have
non-zero values for pure states and vanish for highly impure
states. In fact, the interpretation of the off-diagonal elements
as coherences may be made direct by observing that there
is a simple relationship between the first degree of spectral
coherence S(ω1, ω2) between two frequencies ω1 and ω2 and
the density matrix ρ(ω1, ω2). S(ω1, ω2) may be defined as
follows [19]:

S(ω1, ω2) ≡ Tr[ρ̂sa
†(ω1)a(ω2)]. (9)

It is then a simple matter to show that

S(ω1, ω2) = ρ
∗(ω1, ω2). (10)

Alternatively, we may choose to study the coherence
between two different times. In this case, we define the first
degree of coherence 0(t1, t2) between two different times
t1 and t2. In terms of the time-domain annihilation operator
ã(t) =

∫
dω a(ω)e−iωt, 0(t1, t2) may be defined as

0(t1, t2) ≡ Tr[ρ̂sã
†(t1)ã(t2)]. (11)

It can then be shown that 0(t1, t2) may be expressed in
terms of the density matrix ρD(ω, ω′) as

0(t1, t2) =
∫

dω
∫

dω′ ρD(ω, ω′)e−i ω
′

2 (t1+t2)eiω(t1−t2), (12)

or alternatively we may also relate 0(t1, t2) to the CWF
W(ω, t) through

0

(
t +

t′

2
, t −

t′

2

)
= 2π

∫
dωW(ω, t)eiωt′ , (13)

which corresponds to a form of the Wiener–Khintchine
theorem for single photons [19].

Thus, the Fourier transform of ρD(ω, ω′) with respect
to the anti-diagonal frequency component ω′ yields the

Wigner function W(ω, t), while the Fourier transform of
the Wigner function with respect to the diagonal frequency
component yields the first-order temporal coherence function
0(t + t′/2, t − t′/2). Note that if we define a density matrix
in the temporal domain ρT

s (t1, t2) ≡ 〈t1|ρ̂s|t2〉, in terms of
|t〉 ≡ ã†(t)|0〉, it is straightforward to show that ρT

s (t1, t2) =
0∗(t1, t2), a relationship which mirrors its counterpart in
the spectral domain. Inverting equation (13) leads to a
relationship between ρD(ω, ω′) and W(ω, t), where the roles
of time and frequency are reversed with respect to those in
equation (6), i.e.

W(ω, t) =
1

4π2

∫
dt′ ρT

s

(
t −

t′

2
, t +

t′

2

)
e−iωt′ , (14)

which could be regarded as an alternative definition for the
CWF.

Returning to the spectral domain, let us examine
the conditions for the off-diagonal single-photon density
matrix elements to be non-zero. In terms of ω and ω′,
the density matrix is given by the integral over ω0 of
f (ω + ω′/2, ω0)f ∗(ω − ω′/2, ω0). For a given pair of
signal and idler frequencies ωs = ω and ωi = ω0, for this
integrand to be non-zero, clearly the JSA function must not
vanish at the symmetrically displaced pair of signal-mode
frequencies ω + ω′/2 and ω − ω′/2. Indeed, for a given
ω and ω0 the width in the frequency variable ω′ of the
integrand is closely related to the width of the JSA function
along the signal-mode frequency variable. Note that, if a
one-to-one correspondence exists between the signal and
idler frequencies, then this resulting width is zero and the
integrand above will be proportional to δ(ω′). Thus, a first
condition for the off-diagonal signal-mode single-photon
density matrix elements to be non-zero is that each idler
frequency corresponds to a spread of signal frequencies rather
than to a single signal frequency, i.e. that a strict correlation
between signal and idler frequencies does not exist. Note that,
while a one-to-one correspondence in the signal and idler
frequencies is consistent with maximal spectral entanglement,
the correspondence of each idler frequency to a spread of
signal frequencies is consistent with non-maximal spectral
entanglement.

Even if each ωi = ω0 frequency corresponds to a
spread of signal frequencies, the integration over the idler
frequency ω0 implies that the single-photon density matrix
may still exhibit vanishing off-diagonal elements. Indeed, if
the integrand is oscillatory in the variable ω0, integration may
lead to averaging and therefore to small or vanishing values.
One way in which this may occur is in the case where the
pump mode is chirped. In the specific case of a quadratic
chirp, quantified by the parameter β, the JSA becomes

f (ωs, ωi) = f0(ωs, ωi) exp[iβ (ωs + ωi − ω
0
p)

2
], (15)

where f0(ωs, ωi) represents the unchirped JSA. In this case the
density matrix becomes

ρD
s (ω, ω

′) = ei2βω′(ω−ω0
p)

∫
dω0 f0

(
ω +

ω′

2
, ω0

)
× f ∗0

(
ω −

ω′

2
, ω0

)
ei2βω′ω0 . (16)

3
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For given non-zero ω′ and β values, the phase term in
the integrand leads to oscillations as ω0 is varied, with an
oscillation period given by π/(βω′). Thus, if the integration
range for ω0 is of the order of, or if it exceeds, this period,
integration over ω0 tends to make the off-diagonal elements
vanish. A large chirp parameter β, or largeω′ value (indicating
matrix elements far from the diagonal), lead to a small
oscillation period and thus favors small off-diagonal elements.

Thus, the existence of strong signal–idler correlations or
the use of a chirped pump both lead to a small width of
the density matrix ρD

s (ω, ω
′) along ω′, and therefore favor a

diagonal density matrix structure. In the case of highly impure
states, obtained through either of these two routes, the density
matrix may be expressed as

ρD
s (ω, ω

′) =
1
√
πσ ′

Iω(ω)e
−
ω′

2

σ ′2 (17)

where σ ′ is a small quantity. For a strictly impure state with
σ ′ → 0 the CWF is then, according to the Fourier transform
relationship of equation (6), time-independent, i.e.

W(ω, t) ∝ Iω(ω). (18)

Thus, a perfectly impure state leads to a constant temporal
intensity profile, or in other words to an infinite single-photon
temporal duration. Also, note from equations (13) and (18)
that such a perfectly impure state leads to a first-degree
temporal coherence function of the following form:

0(t1, t2) ∝
∫

dω Iω(ω)eiω(t1−t2). (19)

Note that the above 0(t1, t2) depends on the two
arguments only through their difference. In other words, a
perfectly impure single-photon state is statistically temporally
stationary. In general terms, there is a link between the
temporal duration of the signal photon and its degree of
purity. In order to study this link, let us consider the temporal
intensity profile It(t) of the signal-mode single photon. This
function is given by

It(t) ≡
∫

dωW(ω, t)

=
1

2π

∫
dω′

∫
dω ρD

s (ω, ω
′)e−iω′t. (20)

Normalization of It(t), i.e.
∫

dt It(t) = 1, is guaranteed
by the normalization of the density matrix, i.e. Tr(ρ̂s) = 1.
As is clear from equation (20), this temporal profile is given
by the Fourier transform of the density matrix averaged over
all ω values. For an increasingly impure single-photon state,
leading to a density matrix with an increasingly diagonal
structure, the width of the

∫
dω ρD

s (ω, ω
′) function along

ω′ is reduced, leading to an increased signal-mode temporal
duration as dictated by the Fourier transform relationship of
equation (20). This is consistent with the analysis in [18]
carried out in the context of the Gaussian approximation
for the JSA, leading to the result δtδω = 1/p, where δt
and δω are the temporal duration and spectral width of
the signal-mode single photon, respectively, and p is the

single-photon purity. Thus, for example, as the pump chirp β
is increased, while δω (the width of the marginal distribution
of the joint spectrum |f (ωs, ωi)|

2) remains fixed, since the
two-photon state depends on β only through a phase, the
temporal duration δt is increased, leading to an increased
product δtδω, and consequently to a reduced purity p.

The relationship between photon-pair entanglement and
single-photon purity is well understood. In fact, single-photon
purity is simply the reciprocal of the Schmidt number K,
which quantifies the degree of photon-pair entanglement. This
underscores the importance of factorable states, with K = 1,
which lead to pure states, with p = 1. Conversely, highly
entangled photon pairs, with K →∞, lead to highly impure
single photons with p→ 0 [16].

The joint spectral amplitude f (ωs, ωi) can be written as
follows:

f (ωs, ωi) = φ(ωs, ωi)α(ωs + ωi)e
iβ (ωs+ωi−ω

0
p)

2

, (21)

in terms of the phasematching function (PMF) φ(ωs, ωi)

which describes the optical properties of the nonlinear crystal,

and the pump envelope function (PEF) α(ω)eiβ (ω−ω0
p)

2

which
explicitly includes a quadratic chirp phase. The PMF may
be written as φ(ωs, ωi) = sinc[L1k(ωs, ωi)/2], in terms of
the crystal length L and of the phasemismatch 1k(ωs, ωi) =

kp(ωs + ωi) − ks(ωs) − ki(ωi); here kν (with ν = p, s, i
represents the wavenumber for each of the pump (p), signal (s)
and idler (i).

In order to facilitate the analysis below, it is helpful to
rely on an analytical expression for the CWF. As discussed
in [18], this can be achieved through two approximations:
(i) expressing the JSA function entirely in terms of Gaussian
functions and (ii) relying on a power series expansion,
truncated at first order, of the Gaussian-approximated JSA
argument. In this case, we can write the JSA function
expressed in terms of detunings νs,i = ωs,i − ω

0
s,i (where ω0

s,i
represent signal/idler central phasematched frequencies) as

f (νs, νi) = e−[X
2
ssν

2
s+X2

iiν
2
i +2(X2

si−iβ)νsνi]. (22)

In equation (22) we have used the following definition,
with λ,µ = s, i: Xλµ ≡ 1

σ 2 +
γ τλτµ

4 , in turn written in terms
of the pump bandwidth σ , the pump chirp parameter β and
parameter γ = 0.193 (related to the Gaussian approximation
of the JSA, see [18]). This definition is also in terms of the
signal/idler group velocity mismatch parameters τλ (with λ =
s, i) given in terms of the crystal length L as τλ = L(k′p − k′λ);
here, k′ denotes the frequency derivative of the wavenumber
associated with the each of the modes (p, s, i), evaluated at the
respective central frequency.

Carrying out the corresponding integrations (equa-
tions (3) and (6)), we obtain the following expression for the
CWF valid, for τs 6= τi:

Ws(ν, t) =

√
1−C 2

π1t1ω
e−(

ν
1ω )

2
e− (

t
1t )

2
e−2C ( ν

1ω
)( t
1t ). (23)

4
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The parameters in equation (23) include a spectral width
parameter 1ω, its square given by

1ω2
=

β2
+ XssXii

2[β2(Xss − 2Xsi + Xii)+ Xss(XssXii − X2
si)]
, (24)

a temporal width parameter 1t, its square given by

1t2 =
2(β2
+ XssXii)

Xii
, (25)

and a single-photon chirp parameter C given by

C =
β(Xii − Xsi)√

Xii[β2(Xss − 2Xsi + Xii)+ Xss(XssXii − X2
si)]

. (26)

When plotted in a normalized chronocyclic space
{ν/1ω, t/1t}, the CWF has a circular shape for C =
0 and becomes elongated diagonally for C 6= 0. In
particular, for 0 < C < 1 the distribution involves correlated
frequencies and times, while for −1 < C < 0 the distribution
involves anti-correlated frequencies and times. For |C | =
1, the distribution becomes infinitely elongated, indicating
the maximum degree of single-photon chirp. Using the
inequality X2

si ≤ XssXii, which may be readily proved, it is
straightforward to show that equation (26) indeed fulfills
|C | ≤ 1.

In the limiting case where τs → τi, corresponding
to frequency anti-correlated photon pairs, Xsi → Xss =

Xii and it may be shown that 1ω → ∞ and C → 0.
This resulting infinite spectral width appears because for
anti-correlated photon pairs the phasematching function and
the pump envelope function have the same orientation in
{ωs, ωi} space, and within the linear approximation of the
phasemismatch used for the analytical expression of the CWF
(equations (23)–(26)), the curvature of the phasematching
function is suppressed. In a realistic, i.e. unapproximated,
situation, the non-zero curvature leads to a finite (but large)
spectral width.

As is evident from equation (26), in general in the
absence of pump chirp, the signal-mode single photons are
likewise unchirped. The presence of pump chirp can lead
to single-photon chirp, depending on the type of spectral
correlations in the SPDC photon pairs. In order to make this
more evident, we can write the numerator of equation (26)
proportional to βτi(τs− τi). As discussed in [16], a factorable
state with an elongated joint spectrum is possible if τs = 0 or
τi = 0. Thus, interestingly, a factorable, spectrally elongated
state with τi = 0 is such that the signal-mode single photons
remain unchirped despite an arbitrary level of pump chirp.
Likewise a state with spectral anti-correlations, characterized
by τs = τi which, as discussed in the previous paragraph leads
to C → 0, is also such that the signal-mode single photons
remain unchirped despite an arbitrary level of pump chirp (in
this case, equation (26) should be evaluated in the limit where
Xsi → Xss = Xii). In general, for other types of joint spectra,
the single photons become increasingly chirped as the level of
pump chirp is increased.

We are interested in studying how certain key photon-pair
properties determine the resulting single-photon properties.

Figure 1. Panels (a), (c) and (e) show schematically how the joint
spectrum |f (ωs, ωi)|

2 is determined by the phasematching function
|φ(ωs, ωi)|

2 and the pump envelope function |α(ωs + ωi)|
2. These

three panels correspond to: (a) positive correlations,
(c) anti-correlations with curvature suppressed and
(e) anti-correlations. Panels (b), (d) and (f) show the corresponding
inferred single-photon chronocyclic structure.

In particular, we will consider the following two photon-pair
properties: (i) type of spectral correlations present as
determined by the joint spectrum |f (ωs, ωi)|

2 and (ii) level
of quadratic pump chirp present, quantified through the
parameter β. In turn, we are particularly interested in studying
through the single-photon density matrix and the CWF
the single-photon purity and the type of resulting chirp
in the single photons. We will consider five representative
types of two-photon state, as characterized by the type of
spectral correlations present: (i) spectral anti-correlations,
(ii) spectral positive correlations, (iii) factorable state with a
vertically oriented joint spectrum, (iv) factorable state with a
horizontally oriented joint spectrum and (iv) factorable state
with a symmetric joint spectrum.

Let us consider each of these types of two-photon
states, in turn. Figures 1 and 2 show schematically for
these states how the joint spectrum is determined by the
functions φ(ωs, ωi) and α(ωs + ωi). These figures also
show schematically how quadratic pump chirp, together with

5
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Figure 2. Panels (a), (c) and (e) show schematically how the joint
spectrum |f (ωs, ωi)|

2 is determined by the phasematching function
|φ(ωs, ωi)|

2 and the pump envelope function |α(ωs + ωi)|
2. These

three panels correspond to: (a) factorable state with horizontally
oriented joint spectrum, (c) factorable state with vertically oriented
joint spectrum and (e) factorable state with circular-shaped joint
spectrum. Panels (b), (d) and (f) show the corresponding inferred
single-photon chronocyclic structure.

the unchirped joint spectrum, determine the chronocyclic
structure of the single photons which constitute each of the
photon pairs. In figure 1 each of the three rows correspond to
the following states: positively correlated state, anti-correlated
state and a version of the anti-correlated state exhibiting some
curvature in the joint spectrum. In each row, the left-hand
panel corresponds to a representation of the joint spectrum,
with the blue band representing the phasematching function
φ(ωs, ωi) and the gradient-colored band indicating the pump
envelope function α(ωs, ωi). Note that the PEF exhibits the
same orientation in {ωs, ωi} space for all three states, and in all
cases the width indicates the use of a broadband, pulsed pump.
However, the PMF shows a different orientation in each of the
cases, determined by the specific crystal configuration used,
which in part determines the resulting spectral entanglement
characteristics.

The color gradient used to shade the PEF indicates the
presence of quadratic pump chirp, in which case different

pump frequencies correspond to different temporal ‘slices’ of
the temporally broadened pump pulse. Thus, we can think
of the chirped pump as composed of a temporal sequence
of essentially single-frequency components. Each of these
single-frequency components, �, corresponds to the locus
ωs + ωi = � in {ωs, ωi} space. In this manner, as time
progresses within a given pulse, the pump probes different
diagonal slices of the joint spectrum, i.e. the joint spectrum
produced at a given pump pulse slice with frequency� can be
written as |φ(ωs, ωi)α(ωs+ωi)|

2δ(ωs+ωi−�). The presence
of chirp means that each� occurs at a different time, indicated
schematically in figures 1 and 2 by black diagonal lines.

From this information, it is possible to infer the
chronocyclic structure of, say, the signal-mode single photon.
As time progresses within a given quadratically chirped
pump pulse, a different diagonal slice of the joint spectrum
is emitted. The signal-mode spectrum emitted at a given
time is given by the intersection of the locus ωs + ωi =

� (where � is time-dependent) with the unchirped joint
spectrum |φ(ωs, ωi)α(ωs+ωi)|

2. The right panel on each row
of figures 1 and 2 shows the inferred chronocyclic structure of
the signal-mode single photon, obtained by plotting the points
shown within each joint spectrum (left panels of these figures)
in the signal-mode chronocyclic space {ωs, ts}.

There is clear relationship between the type of photon-
pair spectral correlations and the resulting single-photon
chronocyclic properties. Let us review each of the types
of spectral correlations. For photon pairs with positive
correlations, there is a monotonic resulting relationship
between the time within the pump pulse and the resulting
signal-mode frequency. This results in temporal–spectral
correlations in the signal-mode single photon, or in other
words the signal-mode single photon becomes chirped. These
correlations may be positive for positive β or negative
for negative β. In contrast, for vanishing pump chirp the
signal-mode single photon is likewise unchirped showing no
spectral–temporal correlations.

Let us now turn our attention to spectrally anti-correlated
photon pairs. In the idealized case of strict spectral
anti-correlations, there is a single pump pulse time, related
to a single pump frequency � that participates in the SPDC
process. Thus, in this case, despite the presence of pump
chirp, all signal-mode frequencies correspond to a single
time of emission, and thus arbitrarily strong pump chirp
does not translate into single-photon chirp. Note that this
is consistent with the conclusions reached in terms of our
analytical expression for the CWF (see equation (23)); in this
case, τs = τi means that C → 0 despite the presence of pump
chirp. In a realistic situation for a broadband pump, the joint
spectrum exhibits some curvature related to group velocity
dispersion as shown schematically in figure 1(e). In this case,
the locus ωs + ωi −� = 0 will intersect the joint spectrum at
two distinct areas which approach each other and eventually
merge into a single zone, as � is reduced. The effect of this
is that the curvature which characterizes the joint spectrum
translates into a curvature in the single-photon chronocyclic
structure, as shown schematically in figure 1(f).

Let us now turn our attention to factorable photon pairs;
we will consider three different kinds of factorable states:

6
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Figure 3. For a state with positive spectral correlations: (a) joint spectrum |f (ωs, ωi)|
2, (b) signal-mode, single-photon density matrix

|ρs(ω1, ω2)| with the single-photon purity value indicated, (c) same as (b) but with pump chirp β = 8× 10−26 s2, (d) single-photon
chronocyclic Wigner function W(ω, t), and (e) same as (d) but with pump chirp β = 8× 10−26 s2. Note: for convenience, frequency axes
are labeled in terms of wavelength.

those with a horizontally oriented joint spectrum, those with a
vertically oriented joint spectrum and those with a symmetric
joint spectrum. As may be seen from figure 2(a), in the case
of a horizontally oriented joint spectrum, the diagonal lines
which indicate different pump pulse times intersect the joint
spectrum at distinct points. Thus, in this case in a manner
qualitatively similar to the positive-correlation case, there is
a resulting correlation between the emission time and the
signal-mode emission frequency. In the case of a vertically
oriented joint spectrum, the situation is different. Here, see
figure 2(b), the different emission times of the selected points
all correspond to the same signal-mode emission frequency.
This implies that the presence of arbitrarily large pump chirp
does not result in signal-mode single-photon chirp. Note that
this is consistent with the conclusions reached in terms of our
analytic expression for the CWF (see equation (23)); in this
case, τi = 0 means that C = 0 despite the presence of pump
chirp.

In what follows, we present specific numerical calcula-
tions showing the density matrix, on the one hand, and the
chronocyclic Wigner function, on the other hand, for each

type of photon-pair spectral correlations, and also showing the
effect of quadratic pump chirp. Note that for these numerical
simulations we use the full, unapproximated joint amplitude
function. As we will show, the intuition gained both from
the joint spectrum schematics (figures 1 and 2) and from
the analytical expression of the CWF (see equation (23))
agree well with these numerical results. We will consider
a specific implementation for each of the types of source
considered above. Table 1 shows for each of these sources:
the type of crystal used, the configuration used (type I
or type II), the crystal length L, the crystal cut angle
θpm, the crystal phasematching bandwidth 1ωc, the pump
center wavelength, λo, the pump bandwidth 1ω and the
Fourier-transform-limited pulse duration τ . Note that we have
used as the definition of 1ωc the full width at half-maximum
of the function |φ(ω/2, ω/2)|2, which may also be thought of
as the pump–frequency acceptance function of the crystal.

Photon-pair properties are determined by the characteris-
tics of the crystal and of the pump. In particular, if 1ωc <

1ω, the phasematching function dominates over the pump
envelope function to determine the two-photon state, and

7
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Figure 4. For a state with negative spectral correlations: (a) joint spectrum |f (ωs, ωi)|
2, (b) signal-mode, single-photon density matrix

|ρs(ω1, ω2)| with the single-photon purity value indicated, (c) same as (b) but with pump chirp β = 8× 10−26 s2, (d) single-photon
chronocyclic Wigner function W(ω, t), and (e) same as (d) but with pump chirp β = 8× 10−26 s2. Insets show the result of transmitting the
signal and idler photons through a Gaussian-profile spectral filter with 100 nm bandwidth. Note: for convenience, frequency axes are
labeled in terms of wavelength.

Table 1. Parameters.

Crystal characteristics Pump

Correlation Type L (mm) θPM (deg) 1ωc (THz) λo (nm) 1λ (1ω (THz)) τ (fs)

Horizontal KDP-II 5 67.8 15.6 415 5 nm (54.7) 50.7
Vertical KDP-II 5 67.8 15.6 415 5 nm (54.7) 50.7
Positive BBO-II 10 28.8 208.2 757 20 nm (65.8) 42.1
Negative BBO-I 2 29.2 28.3 400 5 nm (58.9) 47.1
Circular BBO-II 2.293 28.8 328.9 757 15 mm (49.3) 56.2

if 1ω < 1ωc, the pump envelope function dominates over
the phase matching function. As may be seen in the table,
among the particular states chosen for illustration purposes,
for those characterized by an anti-correlated, horizontal
and vertical joint spectrum, 1ωc < 1ω, whereas for the
positive-correlation and the factorable with a circular joint
spectrum states, 1ωc > 1ω.

In all sources considered here, see table 1, we assume
frequency-degenerate, collinear SPDC. Likewise, in all cases

involving non-zero pump chirp, we have assumed a value of
β = 8× 10−26 s2.

Figure 3 corresponds to the state with positive
correlations; panel (a) shows the joint spectrum. The
entanglement present implies that the signal-mode single
photons are impure, as indicated by the diagonal structure
of the density matrix; panel (b) is a plot of |ρs(ω1, ω2)|, for
β = 0. The presence of pump chirp further reduces the
width along the anti-diagonal, i.e. ω′, direction of the
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Figure 5. For a factorable state with a horizontally oriented joint spectrum: (a) joint spectrum |f (ωs, ωi)|
2, (b) signal-mode, single-photon

density matrix |ρs(ω1, ω2)| with the single-photon purity value indicated, (c) same as (b) but with pump chirp β = 8× 10−26 s2,
(d) single-photon chronocyclic Wigner function W(ω, t), and (e) same as (d) but with pump chirp β = 8× 10−26 s2. Note: for convenience,
frequency axes are labeled in terms of wavelength.

density matrix, as discussed above due to averaging, see
panel (c). In the absence of pump chirp, signal-mode single
photons are unchirped, i.e. emission times and frequencies are
uncorrelated, as is clear from the CWF plotted in panel (d).
The presence of pump chirp, as discussed above for this state,
has the effect of chirping the signal-mode single photon, as is
clear from the time–frequency correlations in the CWF plotted
in the presence of chirp, see panel (e).

Figure 4 corresponds to the spectrally anti-correlated
state; panel (a) shows the joint spectrum. Note that the
joint spectrum exhibits some curvature in the {ωs, ωi} space,
related to group velocity dispersion of the SPDC photon
pair. The emission bandwidth, i.e. the width of the SPS, of
0.23 µm is considerable. The inset of panel (a) shows the
joint spectrum assuming that the signal and idler photons
are each transmitted through a Gaussian-profile bandpass
filter with 100 nm bandwidth; as can be appreciated, the
curvature is then essentially suppressed. As in the case of
positive correlations, the entanglement present implies that
the signal-mode single photons are impure as indicated by

the diagonal structure of the density matrix; panel (b) is a
plot of |ρs(ω1, ω2)|, for β = 0. Again, the presence of pump
chirp further reduces the width along the anti-diagonal of
the density matrix due to averaging, see panel (c). As for
the positively correlated case, in the absence of chirp, the
signal-mode single photons are unchirped, i.e. emission times
and frequencies are uncorrelated, as is clear from the CWF
plotted in panel (d). As discussed above, the anti-correlated
state is relatively insensitive to pump chirp. Let us first
consider the filtered state shown in the inset of panel (a).
The effect of pump chirp on the CWF for this filtered,
anti-correlated state may be seen in the inset of panel (e);
it is clear that, despite the presence of pump chirp, there is
no resulting chirp in the signal-mode single photons. In the
case where spectral filtering is not used, the CWF shows a
curvature which, as discussed above, is related to the curvature
of the joint spectrum; see panel (e).

Figure 5 corresponds to the factorable state, with a
horizontally oriented joint spectrum; panel (a) shows a plot
of the joint spectrum. The nearly factorable character of
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Figure 6. For a factorable state with a vertically oriented joint spectrum: (a) joint spectrum |f (ωs, ωi)|
2, (b) signal-mode, single-photon

density matrix |ρs(ω1, ω2)| with the single-photon purity value indicated, (c) same as (b) but with pump chirp β = 8× 10−26 s2,
(d) single-photon chronocyclic Wigner function W(ω, t), and (e) same as (d) but with pump chirp β = 8× 10−26 s2. Note: for convenience,
frequency axes are labeled in terms of wavelength.

the photon-pair state implies that the signal-mode single
photons are basically pure in the absence of pump chirp.
This in turn implies that some of the coherences, i.e. the
off-diagonal elements of the density matrix are non-zero.
This is evident in panel (b), which represents a plot of
|ρs(ω1, ω2)|. The presence of pump chirp has the expected
effect of averaging out the off-diagonal elements, so that the
density matrix acquires a diagonal structure, as shown in
panel (c). In the absence of pump chirp, signal-mode single
photons are unchirped, i.e. emission times and frequencies are
uncorrelated, as is clear from the CWF, plotted in panel (d).
The presence of pump chirp, as discussed above for this state,
has the effect of chirping the signal-mode single photon as is
clear from the time–frequency correlations in the CWF plotted
for β 6= 0, see panel (e).

Figure 6 corresponds to the factorable state, with a
vertically oriented joint spectrum; panel (a) shows a plot of
the joint spectrum. The nearly factorable character of the
photon-pair state implies that the signal-mode single photons
are basically pure in the absence of pump chirp. As for the

factorable state with a horizontally oriented joint spectrum,
this in turn implies that some of the coherences, i.e. the
off-diagonal elements of the density matrix, are non-zero.
This is evident in panel (b), which represents a plot of
|ρs(ω1, ω2)|. The presence of pump chirp has the expected
effect of averaging out the off-diagonal elements, so that the
density matrix acquires a diagonal structure, as shown in
panel (c). In the absence of pump chirp, signal-mode single
photons are unchirped, i.e. emission times and frequencies are
uncorrelated, as is clear from the CWF, plotted in panel (d).
As discussed above, this state has the property that, despite
the presence of pump chirp, the signal-mode single photons
remain basically unchirped, as is evident from the CWF with
β 6= 0, plotted in panel (e).

Finally, figure 7 corresponds to the factorable state, with
a symmetric, or circularly shaped, joint spectrum; panel (a)
shows a plot of the joint spectrum. The nearly factorable
character of the photon-pair state implies that the signal-mode
single photons are basically pure in the absence of pump chirp.
As for the previous two types of factorable states above, this
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Figure 7. For a factorable state with a circular-shaped joint spectrum: (a) joint spectrum |f (ωs, ωi)|
2, (b) signal-mode, single-photon

density matrix |ρs(ω1, ω2)| with the single-photon purity value indicated, (c) same as (b) but with pump chirp β = 8× 10−26 s2,
(d) single-photon chronocyclic Wigner function W(ω, t), and (e) same as (d) but with pump chirp β = 8× 10−26 s2. Note: for convenience,
frequency axes are labeled in terms of wavelength.

in turn implies that for β = 0 some of the coherences, i.e. the
off-diagonal elements of the density matrix, are non-zero.
This is evident in panel (b), which represents a plot of
|ρs(ω1, ω2)|. The presence of pump chirp has the expected
effect of averaging out the off-diagonal elements, so that the
density matrix acquires a diagonal structure, as shown in
panel (c). In the absence of pump chirp, signal-mode single
photons are unchirped, i.e. emission times and frequencies are
uncorrelated, as is clear from the CWF, plotted in panel (d). In
the presence of pump chirp, the signal-mode single photons
acquire a chirp as is evident from the CWF with β 6= 0, plotted
in panel (e).

3. Conclusions

In this paper we have studied the chronocyclic properties
of the single-photon constituents of photon pairs generated
by the process of spontaneous parametric downconversion.
We have studied how photon-pair properties, in particular
(i) the type of signal–idler spectral correlations and (ii) pump

chirp, determine the resulting single-photon properties, in
particular the purity and the single-photon chirp. We have
studied single-photon properties through the corresponding
single-photon spectral density matrix ρs(ω1, ω2), and in
chronocyclic space through the single-photon chronocyclic
Wigner function W(ω, t), and how these are determined
by photon-pair properties, including the joint spectrum
|f (ωs, ωi)|

2 and the level of pump chirp β. We have studied
the relationship between these functions and the first degree
of spectral coherence S(ω1, ω2), on the one hand, and the first
degree of temporal coherence 0(t1, t2), on the other hand.

As we have shown before, pump chirp may be used
as an effective tool to control photon-pair entanglement, or
equivalently to control the single-photon purity. Varying the
level of pump chirp in order to control spectral entanglement
also results in a modified chronocyclic single-photon
character. In this paper we focus on the study of this single-
photon chronocyclic character, in particular the single-photon
chirp, and how this is determined by photon-pair properties.
We find that, besides the previously understood link between
pump chirp and degree of photon-pair entanglement or single-
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photon purity, pump chirp in general leads to single-photon
chirp, in a manner determined by the type of spectral
correlations present. In fact, for certain types of signal–idler
spectral correlations single photons remain unchirped despite
the presence of pump chirp. We hope that this paper will
contribute to a better appreciation of the multi-mode, spectral
and temporal, character of single photons derived from
spontaneous parametric downconversion.
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