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We study the process of copolarized spontaneous four-wave mixing in single-mode optical fibers, with
an emphasis on an analysis of the conversion efficiency. We consider both the monochromatic-pump and
pulsed-pump regimes, as well as both the degenerate-pump and nondegenerate-pump configurations. We present
analytical expressions for the conversion efficiency, which are given in terms of double integrals. In the case of
pulsed pumps we take these expressions to closed analytical form with the help of certain approximations. We
present results of numerical simulations, and compare them to values obtained from our analytical expressions,
for the conversion efficiency as a function of several key experimental parameters.
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I. INTRODUCTION

Photon-pair sources based on spontaneous parametric
processes have represented a crucial enabling technology
for fundamental tests of quantum mechanics [1] and for the
implementation of quantum-information processing protocols
[2]. An important distinction among spontaneous parametric
photon-pair sources is whether they are based on second-order
nonlinearities in crystals [3], or on third-order nonlinearities,
often in optical fibers [4,5]. In the first case, we refer
to the process as spontaneous parametric down-conversion
(SPDC), while in the second case we refer to the process
as spontaneous four-wave mixing (SFWM). The fact that
two pump photons are annihilated per photon-pair generation
event in the case of SFWM rather than only one, as in
the case of SPDC, represents the key underlying difference
between these two processes. This essential difference can
make SFWM sources superior in terms of a greater ability
to engineer the photon-pair properties [6], and in terms
of a different dependence of the emitted flux on certain
experimental parameters, which favors bright photon-pair
sources.

Of course, an important consideration in the design and
implementation of photon-pair sources is the emission flux, or
equivalently, the conversion efficiency. On the one hand, the
ability to compare the expected flux in a number of different
experimental situations is an important tool for the design of
specific sources and experiments. On the other hand, our under-
standing of a photon-pair source is not complete without a full
appreciation of the dependence of the conversion efficiency on
all relevant experimental parameters. The motivation behind
this paper is to present specific analytic expressions for the
conversion efficiency expected in the spontaneous four-wave
mixing process in optical fibers. While we restrict our attention
to copolarized SFWM (i.e., we assume the same polarization
for all four fields) and likewise we restrict our treatment
to cases where all four fields propagate in the fundamental
fiber mode, we consider a number of other source variations.
Specifically, we consider both pulsed and monochromatic
pumps, as well as both degenerate and nondegenerate pumps.
We derive expressions for the conversion efficiency in the
form of integrals, which where possible we take to closed
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analytic form under certain approximations. We compare
values derived from numerical integration of the conversion
efficiency expressions (without resorting to approximations)
to corresponding values derived from expressions in closed
analytic form. We also note that this work could be extended
in a straightforward manner to also incorporate the cases
of cross-polarized SFWM, and of the SFWM process in
birefringent fibers.

Let us note that for second-order nonlinear processes which
are stimulated in nature, such as second-harmonic generation,
the emitted flux scales as the square of the incident pump
power, and scales linearly with the pump bandwidth [7]. This
is a result of the fact that two pump photons are combined
to generate each second-harmonic photon. In the case of
SFWM, even though the process is spontaneous in nature,
two pump photons are likewise involved in every photon-pair
generation event. This leads to the same dependence of emitted
flux on pump power and pump bandwidth, for spontaneous
four-wave mixing in a third-order nonlinear medium, as
compared to (stimulated) second-harmonic generation in a
second-order nonlinear medium. This is to be contrasted with
SPDC for which the emitted flux scales linearly with pump
power and is constant (within the phase-matching bandwidth)
with respect to the pump bandwidth. The fact that in some
respects SFWM sources behave essentially as a stimulated
process would in a second-order nonlinear medium, coupled
with the long interaction lengths possible, favors SFWM
over SPDC sources in terms of the attainable photon-pair
flux. As a concrete illustration, in a remarkable recent SPDC
experiment [8], despite extensive source optimization, the
observed photon-pair flux is ~500 times lower than that
in a representative SFWM experiment [9], when comput-
ing the flux per unit pump power and per unit emission
bandwidth.

While some previous works have analyzed the emitted
flux in the SFWM process [10-12], in this paper we aim
to present a unified approach leading to explicit conversion
efficiency expressions, together with corresponding numerical
simulations, valid for the pulsed- and monochromatic-pump
regimes, as well as for the degenerate- and nondegenerate-
pump configurations.
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II. DERIVATION OF THE RATE OF EMISSION

In this paper we study the process of spontaneous four-
wave mixing in optical fibers, in which nonlinear phenomena
originate from the third-order susceptibility x®. In this
process, two photons (one from each of two pump fields E|
and E;) can be jointly annihilated to give rise to the emission
of a photon pair comprised of one photon in the signal mode
E, and one photon in the idler mode E;. In our analysis we
assume that all fields propagate in the same direction along
the fiber (which defines the z axis), and in the fundamental
transverse mode supported by the fiber. The electric fields can
be written in the form E,, = (E(" + E{)/2; the superscripts
(+) and (—) denote the positive- and negative-frequency parts
of the electric field. While we assume that all four participating
fields are linearly polarized, parallel to the x axis, our analysis
could be adapted to cross-polarized spontaneous four-wave
mixing processes. In this paper, we specifically focus on the
rate of emission of photon-pair sources based on spontaneous
four-wave mixing in optical fiber.

It can be shown that the SFWM process is governed by the
following Hamiltonian:

X 3
A(t) = Ze(,XG) / PrEW @) ESP (r,1)
x EOw,nET (x,0), (1)

where the integration is carried out over the portion of the
nonlinear medium which is illuminated by the pump fields,
and ¢, is the vacuum electrical permittivity.

The quantized signal and idler fields can be written in the
form

ED () = ivokf(x.3) Y expl—i(wt — k2)le(@)ak), (2)
k

where the angular frequency w is a function of k, as defined
by the dispersion relation. 8k = 2r/L is the mode spacing,
written in terms of the quantization length L o. Function £(w)

is given as
() v 3)
w)=_[———
men3(w)’

in terms of the (linear) refractive index of the nonlinear
medium n(w) and of Planck’s constant 2. In Eq. (2), a(k) is the
annihilation operator associated with the fundamental propa-
gation mode in the fiber, and f(x,y) represents the transverse
spatial distribution of the field, which is normalized so that
[ [1f(x,y)|*dxdy = 1, and which is here approximated to
be frequency-independent within the bandwidth of the signal
and idler modes.

In our analysis, we assume that the two pumps can be well
described by classical fields, expressed in terms of their Fourier
components as

ED(e0) = Ay fu(x,y) / dewa,(@expl—ilof — k@)z]), (4)

where, for each of the two pump fields (v = 1,2), A, is the
amplitude, o, (w) is the spectral envelope with normalization
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f dw|o,(w)]? = 1, and fu(x,y) is the transverse spatial distri-
bution. Functions f,(x,y) are approximated to be frequency-
independent within the spectral width of the pump pulses
and exhibit the same normalization as their signal and idler
counterparts [see Eq. (2)]. It can be shown that A, is related
to pump peak power, P,, according to the relation

12
A = 2P, 5)
! €,CNy |f dcuoz\,(a))‘2 7

in terms of n, =n(w)), where ! represents the carrier
frequency for pump v.

By replacing Eqs. (2) and (4) into Eq. (1), and following a
standard perturbative approach [13], it can be shown that the
two-photon state produced by spontaneous four-wave mixing
is given by |W¥) = |0),]|0); + ¢|¥>), where |W;) is the two-
photon component of the state

(W) = > Y Gulks.ki)al(k)a'(k)|0)s[0)i,  (6)

ke ki

written in terms of the joint amplitude G (k,,k;) and a constant
¢, related to the conversion efficiency

3027)x Pe, Lok
= im+A1A2/dx/dyfl(x,y)
X fo(oe,y) £ e, y) f (e, p). (7

The function G(w;,w;) = £(ws)l(w;) F (ws,w;) results from
writing Gy (ks,k;) in terms of frequencies rather than wave
numbers and represents the joint spectral amplitude, written in
terms of the function F(wy,w;) given by

F(ws,w;) = /dwm(w)az(ws + w; — w)

L )
x sinc |:5Ak(w,a)s,w,~):| ¢l 3 Mkw.wr) (8)

Note that the spectral dependence of ¢(w) [see Eq. (3)] tends to
be slow over the frequency range of interest. If this dependence
is neglected [14], the photon-pair spectral properties are fully
determined by function F(w;,w;), which from this point
onward we refer to as the joint spectral amplitude function.
In Eq. (8), Ak(w,ws,w;) represents the phase mismatch,
given by

Ak(w,ws,w;) = k(w) + k(wy + ©0; — )
—k(wy) — k(w;) — (11 P1 + 2 Pa), )]

which includes a nonlinear contribution (y; P; 4 y» P,) derived
from self-phase and cross-phase modulation, where y,, is the
nonlinear coefficient given by

3x Ve

=2 v 10
de,c?n2 ALy (10)

14
In the above expression, we have defined n, = n(»9) and the
effective area A% = [[ [ dxdy| f,(x,y)|*]7", in terms of the
carrier frequency !, for pump mode v [15,16].

For ease of calculating the emitted flux for fiber-based
SWEM sources, we assume that the photon pairs, once
generated in the fiber of length L considered in our calculation,
propagate along a continuation of this fiber to the detectors,
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in such a way that no further photon pairs are produced. In
a realistic experiment this could be achieved by suppressing
pump photons through the use of appropriate spectral filters.
Thus, the (linear) optical properties of the fiber through which
the photon pairs propagate in order to reach the detectors are
assumed to be identical to those of the fiber length where
generation takes place. Likewise, we assume that the photon
pairs are split into separate spatial signal and idler modes
(e.g., with a fiber-based beam splitter), and we refer to the
count rate of an individual mode (e.g., the signal mode) as
the source brightness. In order to proceed with our analysis,
we are interested in the expectation value of the signal-mode
energy density given by

u(r,t) = S (W | E7V (0,0 D (0,0)| W), (11)
where Ds(r,t) = eEAs(r,t) is the signal-mode electric dis-
placement operator, € is the medium permittivity, and E is
given according to Eq. (2). Nevertheless, since propagation
occurs along the z axis, it is convenient to calculate the linear
energy density u,(z,t) by integrating u(r,t) over the transverse
coordinates x and y. Consequently, replacing Egs. (2) and (6)
into Eq. (11), we can show that

u,(z,t) = 0/dks/dk;/dk,’@[a)(kx)]ﬂp[a)(k;)]G*(kS,k[)
% G(k/ ’ki)efi[w(kx/)7w(kl;)]tefi(k.\-fk;)z’ (12)

where 9 = 2|¢|?/(8k)? (note that ¢ is linear in 8k so that 9 is
constant with respect to k) and is explicitly given by

232w )?€2n 1 nyc?

2 0,0
M OHON

L*y*P P,

13)

and £ p(w) = €,n%0(w). The linear energy density, see Eq. (12),
has been written in terms of the nonlinear coefficient y [17]
[which is different from y, and y, of Eq. (10)], defined as

3x9 /0w (14)

)/ =
4606‘ nlnerff

where A is the effective interaction area among the four
fields given by

1
[dx [dyfi(x,y) (e, 9) f5Ce,p) f(x,y)

Note that the above expression for A takes into account the
normalization assumed for the transverse spatial distribution
of each of the four modes which participate in the process of
SFWM.

In Eq. (12), k-vector sums have been converted to in-
tegrals, which can be done in the limit Ly — oo, so that
8k Y, — [ dk. This equation gives the signal-mode linear
energy density. The total signal-mode energy can be obtained
by integrating u,(z,ty), evaluated at a given time #;, over
coordinate z within the spatial extent of the generated biphoton
wave packets. For this calculation, we consider two cases:
(1) pulsed-pump fields and (ii) monochromatic-pump fields,
which are addressed in the following two subsections.

5)

eff
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A. Pulsed-pump regimes

In order to carry out further calculations for the specific
case of pulsed pumps, we limit our treatment to pump fields
with a Gaussian spectral envelope, which can be written in the

form
21/4 |: (a) — w3)2i|
ay(w)= ———exp| ——— |, (16)

e, 7

where o represents the central frequency and o, defines the
bandwidth. Replacing Egs. (3), (8), (13), and (16) into Eq. (12),
we obtain the following expression for the SFWM signal-mode
energy produced by an isolated mode-1 pump pulse interacting
with an isolated mode-2 pump pulse:

26hczn1n2 LZyZPl P2

0
Us = / dzu (z,tp) =

ol ofos
2k(”(a) ) wik®(w;)
d s d i d - s> Wi 27
f w/ Uy )

a7)

in terms of a version of the joint spectral amplitude [see
Eq. (8)] defined as f(wy,w;) = (mo102/2)"/? F (ws,w;), which
does not contain factors in front of the exponential and sinc
functions so that all factors appear explicitly in Eq. (17). Note
that the signal-mode energy density has appreciable values
within the overlap region between the two pump pulses along z;
because we are considering for this calculation a single isolated
pulse for each of the two pump modes, we have extended
the integration limits to +00 in Eq. (17). In the derivation
of this equation, integrals over k; and k; were transformed
to frequency integrals through the relation dk = k" (w)dw,
where kV(w) represents the first frequency derivative of k(w).

In order to calculate the number of signal-mode photons
generated per mode-1 and mode-2 pump pulse pair, we
first express U; in terms of the signal-mode spectral energy
density, us(ws), defined such that U; = f dwsug(ws). The
corresponding spectral photon number density is then given
by A5 (wy) = us(wy)/(hwy) and finally the total emitted-photon
number is obtained as Ny = [ dwy A5 (wy).

We are interested in calculating the conversion efficiency
in the copolarized SFWM process, which we define as n =
Ns/N,, where N, = N+ N»; here, N, is the number of
photons per pump pulse for each of two pump modes (with
v = 1,2). For sufficiently narrow-band pump pulses, it is
acceptable to write N, = U, /(iw}), where U, is the energy
per pulse in mode v. In this case, we arrive at the following
expression for N,:

N, = “/EP”. (18)

hwlo,

The photon-pair conversion efficiency can then be written as
L?>y%NiN,
0102(N1 + Na)
k(l) w; k(l)

28%%c%n1n,
Qm)

fan fon

Through Eq. (19), we may gain an understanding of the de-
pendence of the conversion efficiency on various experimental

)7:

o)’ (19)
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parameters, including the fiber length L, the pump peak powers
(P; and P,) and the pump bandwidths (o7 and o07). Besides
these parameters, the conversion efficiency of course also
exhibits a dependence on fiber dispersion properties through
the phase mismatch [see Eq. (9)]. From Eq. (19), it is clear that
n varies quadratically with the nonlinear coefficient y, which
implies that it has an inverse fourth power dependence on the
transverse mode radius [15]. This means that, in general, a
small core radius leads to large rates of emission (note that
this trend may be reverted for sufficiently narrow fibers for
which the mode radius can increase as the core radius is
reduced [18,19]).

The dependence on pump peak power is clear from Eq. (19),
where N, is linear in P, according to Eq. (18). As expected,
N; exhibits a quadratic dependence on the pump power (or,
alternatively, n exhibits a linear dependence on the pump
power), which is more evident for degenerate pumps, for
which P, = P, = P. This behavior represents an important
difference with respect to photon-pair sources based on SPDC
in second-order nonlinear crystals, for which Nj is linear in
pump power. In fact, a quadratic dependence of the generated
power on the pump power, in the case of second-order
nonlinear optics, is associated with stimulated processes such
as second-harmonic generation rather than with spontaneous
processes. This quadratic pump-power scaling represents a
clear advantage of the process of SFWM over SPDC, in terms
of the attainable photon-pair flux, for the design of bright
photon-pair sources. Note that because the phase mismatch
has an additive term which is linear in P; and P», for large
enough pump powers there can be a deviation from this stated
quadratic dependence.

In common with SPDC, a concern with SFWM is that for
sufficiently high conversion efficiencies, multiple photon pairs
can be generated at a given time. This represents a limitation,
since many experiments rely on the emission of individual
photon pairs, i.e., which can be well isolated from other
photons both spatially and temporally. Thus, for example, the
existence of multiple-pair amplitudes implies that a detection
event (with a nonphoton-number resolving detector), say in
the idler mode of an SPDC source, cannot herald a true
single photon in the signal mode of the source. In practice,
this means that the conversion efficiency (which depends on
experimental parameters such as the nonlinearity and the pump
power) must be limited so that the probability of multiple
pair emission remains negligible. Let us note that other
physical systems (e.g., biexcitonic decay in quantum dots [20])
are capable of true photon-pair emission. However, SPDC
and SFWM remain highly flexible platforms for photon-pair
emission, with entanglement characteristics which can be
tailored according to the requirements of specific applications.

The dependence of the conversion efficiency on the fiber
length L and on the pump bandwidths (o and o) is not as
simple to deduce from Eq. (19), compared to the pump power
dependence, because these parameters are implicit in the joint
spectral function [see Eq. (8)] which is given by a convolution-
type integral. In general, as L increases, the joint spectral
intensity | f(ws,;)|* tends to exhibit a width in the space of
generated frequencies which scales as L~!. Equation (19) then
tells us that the conversion efficiency tends to be linear in L.
However, as we will see below, certain situations (such as
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nondegenerate pumps) can lead to a deviation from this linear
behavior. Of course, a natural advantage of spontaneous four-
wave mixing over spontaneous parametric down-conversion
sources is that the interaction length can be increased easily,
simply by increasing the fiber length (while, usually, nonlinear
crystals tend to be limited in length to a scale of mm or cm).

While in general it is not possible to find a closed analytic
expression for n, we will show in the next section that this
becomes possible under certain approximations.

B. Pulsed pumps: Closed analytic expressions

In Ref. [6], we showed that it is possible to derive a
closed analytic expression for the joint spectral amplitude
[see Eq. (8)] if we resort to a linear approximation of the
phase mismatch. Specifically, this approximation involves
writing the phase mismatch [see Eq. (9)] as a first-order
Taylor expansion in the frequency detunings w, — wy, (for
u = s,i), where o, represents the signal and idler frequencies
for which perfect phase matching is obtained. Here, we exploit
this approximation in order to obtain analytic expressions for
the conversion efficiency.

We start by defining the function h(wy,w;), which con-
stitutes a factor in the integrand of the expression for the
conversion efficiency [see Eq. (19)],

w0 kD (@ kM ()

n2(w,)n(w;)

h(ws,w;) = (20)

Next, we assume that /(wy,w;) varies slowly over the spectral
range of interest, so that we can consider it to be a constant
when evaluating the integral in Eq. (19). We analyze first
the general case in which the pumps are nondegenerate, i.e.,
where they can differ both in central frequency (w{ and
@5) and in bandwidth (o7 and o3). Following the treatment
presented in Sec. 2 of Ref. [6] it is possible to find an analytic
expression for the conversion efficiency n (NDP below refers
to nondegenerate pumps), i.e.,

NDP 2122 n1n,y Ny N, erf[(«/zB)’l]h(a)?,wl‘?)
ST WMy KR

. @D

where k) = k(l)(wZ) (with . = 1,2,s,i), where erf(x) is the
error function, and where we have defined the parameter B
as [6]

(o +03)"

" ool [ K]

(22)

Note that the only dependence of the conversion efficiency
on the pump bandwidth and the fiber length is through the
B parameter in the argument of the error function. The error
function in Eq. (21) implies that nNPP exhibits a saturation
behavior when L or o, vary, governed by the group-velocity
mismatch between the two pumps. For example, we expect that
as the fiber length is increased for fixed pump bandwidths, the
conversion efficiency reaches a plateau at the point where the
two pump pulses no longer overlap in time due to their different
group velocities.
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Let us now consider the degenerate-pump limit of Eq. (21).
In this case, making 0y =0, =0 and P = P, = P, in the
limit o] — 0§ = w°, Eq. (21) reduces to

DP 2*n*c*n®(w’)Lo Ny?
ARk

where DP denotes degenerate pumps. In the above equation
it is possible to observe that the SFWM conversion efficiency
increases linearly with fiber length and pump pulse bandwidth,
at least within the frequency range in which the linear
approximation for the phase mismatch is valid.

Note that in both the degenerate- and nondegenerate-pump
cases, the emitted flux is inversely proportional to the group-
velocity mismatch between signal and idler modes. As k(

h(w?,e?), (23)

approaches kfl), the orientation of the phase-matching function
in the generated frequencies space {w,,w;} approaches that of
the pump envelope function [6], with the implication that the
emitted bandwidth increases, and consequently the generated
flux also increases. In the case where k(" = k" (which
would result from making the signal and idler frequencies
degenerate), the linear approximation is no longer sufficient;
second- and higher-order terms (not present within this
approximation) prevent the resulting divergence in Eq. (21).
From this analysis, it becomes clear that sources with a small
signal-idler spectral separation tend to exhibit a considerably
higher brightness than sources with a large signal-idler spectral
separation.

C. Narrow-band-pump regimes

In this section, we focus our attention on SFWM photon-
pair sources involving pumps in the monochromatic limit, i.e.,
for which o1, — 0. If the SFWM process takes place in a
single transverse mode environment, such as a single-mode
fiber, factorability is enforced on the transverse momentum
degree of freedom, leaving frequency as the only continuous-
variable degree of freedom where entanglement may reside.
Let us note that SFWM sources based on narrow-band
pumps permit the emission of photon pairs which are highly
entangled in frequency [21]. Here we present an analysis of
the conversion efficiency for this type of source.

In order to proceed with the calculation, we take the
limit o7 = 0 = 0 — 0 of the linear energy density u,(z,?)
[see Eq. (12)] [21], obtaining the following time-independent
expression

Us(2) = Do f dk, / ki () (@)
x L)k V | Fo(w;, ), (24)

in terms of the joint amplitude function F,, (ws,®;) and of the
parameter v, given by

Few(ws,w;) = 8(ws + w; — w1 — w2)

L .
e [E Akew(ws,wﬂ} el i skulonen (25

23(27'[)26(21’11]1262
Vew = —5—2——L*y*p1p2,
n w12
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where Ak, (wy,w;) is the phase mismatch, which is now a
function only of w; and w;, that is,

Akczu(a)Sva)t') =k [(ws +w +ow — a)2) /2]
+kl(ws + w; — o1 + w2)/2]
— k(ws) — k(i) — (Y1p1 + 72p2)- (26)

In Egs. (25) and (26), w, represents the frequency and p,
represents the average power for each of the two pump
modes (with v = 1,2). Next, we define the spectral linear
energy density %,(k;,z) corresponding to an optical mode
with propagation constant &, such that u,(z) = f dks U, (kg,z).
The signal-mode energy reaching a detector placed at position
7z = zp during a time interval At is then given by % (k) =
foDD dz%,(ks,z), where 7, = zp — At/k'V. Then, the signal-
mode energy reaching the detector from all modes k; is given
by

U = / dk, U (ky). @7

From Eq. (27), following a treatment similar to that used for
the pulsed-pump case, it can be shown that the number of
photons reaching the detector during time At is given by

25n1n2c2L2y2p1p2At
Ncw =

/da)h(a),a}l + wy — w)
Ty

x sinc*[LAKL, (®)/2], (28)

where Ak, (®) = Akqy(w,01 + @, — ) and the function
h(w,w; + w, — w) is given according to Eq. (20).

The energy launched into the fiber corresponding to pump
mode v (with v = 1,2) during the time interval At is U, =
pyAt, so that the total photon number from two pumps in the
time interval Ar can be obtained as

piw + prwr At

, 29
w1y h ( )

Np,cw =

and therefore, the conversion efficiency 7¢, = N;/N, ¢y in

the process of SFWM with monochromatic pumps is given by
2’hc*niny L2y pipa

b pP1wz + prwg

x sinc’[L Ak, (w)/2]. (30)

New =

/da)h(a),ml + wy — w)

III. CONVERSION EFFICIENCY
IN SPECIFIC SITUATIONS

In this section, we present the results of simulations of
the expected conversion efficiency as a function of various
experimental parameters: fiber length, pump power, and pump
bandwidth. We also consider the dependence of the conversion
efficiency on the type of spectral correlations between the
signal and idler photons. Note that for these simulations, we
have used the full two-photon state, i.e., we have not resorted
to approximations. We compare these simulations with plots
derived from the analytic expressions for the conversion
efficiency presented in Sec. II B. We include in our analysis
both the degenerate- and nondegenerate-pump configurations,
as well as both the pulsed- and monochromatic-pump field
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regimes. We assume that the SFWM process takes place in
photonic crystal fibers (PCFs), which have been widely used
for the experimental implementation of photon-pair sources
[22-24]. PCFs are typically characterized by higher values
of the nonlinearity coefficient y, due to a large core-cladding
dielectric contrast, as compared to typical telecommunications
fibers. This leads to larger rates of emission, as is clear
from Egs. (19) and (30). Furthermore, PCFs permit the
engineering of the fiber dispersion properties and therefore
of the resulting photon-pair properties [6]. In the following
three subsections, we specifically consider a PCF with a
core radius of r =0.97 um and an air-filling fraction of
f = 0.91; these values were chosen so that a zero dispersion
point exists at A = 0.715 wm. The fiber dispersion properties
were calculated through the step-index model proposed in
Ref. [25]. We assume a repetition rate for the pulsed-pump
modes of f, = 80 MHz, a fiber length of L = 0.5 m (except
in Sec. III A where we study the fiber length dependence), an
average pump power of p =300 uW (except in Sec. III B,
where we study the pump power dependence), and a pump
bandwidth of o = 3.0 THz (except in Sec. IIIC, where we
study the pump bandwidth dependence).

For the degenerate-pump configuration, we assume that
the pump pulses are centered at A, = 0.708 pm. This leads
to a numerically calculated nonlinear coefficient, through
Eq. (14), of y =137 km™" W~!. The pump peak power,
with a value of 4.5 W, derived from ¢ =3 THz and p =
300 uW, leads to generated signal and idler wave packets
centered at 0.5759 and 0.9185 pm, respectively. For this
source configuration, the signal and idler frequencies are
nearly frequency-anticorrelated, with an orientation of the joint
spectrum in {w;,w;} space of 6;; = —40° with respect to the
w; axis [6].

For the nondegenerate-pump configuration, we assume that
the two pump fields can be obtained as the fundamental
and second-harmonic signal of the same laser system, thus
facilitating the experimental implementation. As discussed in
Ref. [6] this configuration permits the generation of signal
and idler modes, which are sufficiently distant (in frequency)
from the pumps, so that the signal and idler modes remain
uncontaminated by photons produced by spontaneous Raman
scattering. Specifically, we assume that the pump central
wavelengths are A = 0.521 and 19 = 1.042 pum, which leads
to anumerically calculated nonlinear coefficient for the SFWM
interaction of y = 131 km~! W~!; we note that this could
be achieved with a Yb:KGW laser [26]. The values of the
source parameters which we have assumed lead to signal and
idler modes centered at A2 = 0.5826 and A7 = 0.8600 wm,
respectively. Similar to the degenerate-pump case above,
parameters were chosen so that this photon-pair source exhibits
near-spectral anticorrelation, in this case with a joint spectrum
oriented at —41° in {w,,w;} space. It is worth mentioning
that variations in the pump peak power (which can result
from variations of the average power or bandwidth) can
produce a shift of the signal and idler central generation
frequencies due to the nonlinear term in Eq. (9) and could
also produce variations of the types of signal-idler spectral
correlations. However, we found that for the range of peak
powers considered in the following simulations, these changes
are negligible.
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FIG. 1. (Color online) Conversion efficiency as a function of the
fiber length for the pulsed and monochromatic pump regimes (denoted
by n and 7., respectively), and for the following configurations: (a)
degenerate pumps and (b) nondegenerate pumps. The red squares
represent results obtained by numerical evaluation of Eq. (19).
The solid-black line corresponds to results obtained from analytical
expressions described in Sec. I B.

A. Fiber length dependence

Let us first consider the conversion efficiency for the
photon-pair sources described above as a function of the fiber
length. For the degenerate-pump configuration, the pump
bandwidth which we have assumed (o0 = 3.0 THz) corre-
sponds to a width in wavelength of AA =0.94 nm. The
fiber length is varied between 0.15 and 1.0 m. The results
obtained by numerical evaluation of Eq. (19) and those
obtained from analytic expressions [Eq. (23)] are presented
in Fig. 1(a). From this figure, it can be seen that numerical and
analytical results are in good agreement over the full range
of study, evidencing that the analytical expression derived
in the linear approximation of the phase mismatch is in
fact an excellent approximation. As predicted by Eq. (23),
the conversion efficiency exhibits a linear dependence on
fiber length. For the longest fiber considered (L = 1.0 m),
approximately 5.3 x 108 photon pairs per second are emitted.

Likewise, considering the same fiber length range and
average pump power as above, we evaluate the conversion
efficiency 7., as a function of the fiber length, in the
monochromatic pump limit. Results obtained by numerical
evaluation of Eq. (30) are represented in Fig. 1(a) by a
dashed-blue line. It can be appreciated that the dependence
of n., on L is, once again, linear. For the source parameters
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which we have assumed and for the longest fiber length
considered, approximately 5.0 x 10* photons/s are generated,
which is much lower than the emission rate attainable in the
pulsed-pump regime for the same fiber length. This reflects a
general trend: the conversion efficiency is higher for pulsed
pumps than for monochromatic pumps, because for SFWM
(unlike for SPDC), the emission rate depends on the peak
power (which increases with increasing pump bandwidths)
rather than on the average pump power.

For the nondegenerate-pump configuration, we assume
that the two pumps have the same bandwidth measured in
frequency o) = 0, = 3 THz, corresponding to AX; = 0.51
and AL, = 2.03 nm. It is also assumed that the pumps have
the same average power, so that P; = P,. Figure 1(b) shows the
conversion efficiency as a function of fiber length, in the range
0.15-1.0 m. Clearly, there is an excellent agreement between
numerical and analytical results calculated from Eqs. (19) and
(21), respectively. In this figure, we can appreciate that if the
fiber length exceeds a certain value, denoted by L., the
conversion efficiency reaches a plateau. This effect is related
to the pulsed nature of the nondegenerate pump fields; the two
fields experience different group velocities in the fiber. For
a sufficiently long fiber, the pump pulses no longer overlap
temporally, and therefore photon-pair generation ceases. Lax
is defined as the value of L which makes the argument of
the erf function in Eq. (21) equal to 2 (for which the erf
function attains 99.5% of its maximum value), which leads
to the following expression:

2V2,/o} + o} an

0102|k(')(a)?) — k(')(wg)| ’

Lmax =

This equation implies that for fixed pump bandwidths, the
maximum interaction length between the pumps is determined
by the difference of their reciprocal group velocities. Thus,
pump fields with a considerable spectral separation will tend
to exhibit a short maximum interaction length, which will
be reflected in a low emission rate in comparison to that
attainable in a degenerate-pump configuration, as is the case
for the sources assumed for Fig. 1(a). In the particular case of
Fig. 1(b), the maximum interaction length is Lyx = 0.263 m
and 5.12 x 107 photon pairs per second are generated for a
fiber of length L = Lp,x. Of course, if the temporal duration
of the pump pulses is increased, this will tend to increase the
maximum interaction length, since the mode-1 and mode-2
pulses will remain temporally overlapped over a longer length
of fiber. Results obtained for the monochromatic-pump regime
are also shown in Fig. 1(b). In this case we assumed the same
pump power and fiber lengths as above. It can be appreciated
that the conversion efficiency increases linearly with fiber
length over the full range of fiber length values. Indeed, for
nondegenerate monochromatic pumps, there is no maximum
interaction length.

From these results, it is evident that pulsed-pump regimes
(both in the degenerate- and nondegenerate-pump config-
urations) lead to much higher conversion efficiencies than
monochromatic-pump regimes. This will also be clear from
the discussion in Sec. III C, where we analyze the conversion
efficiency as a function of pump bandwidth. While nondegen-
erate pumps lead to a lower conversion efficiency compared
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to degenerate pumps (for given pump bandwidths), in this
case the effect is much less drastic than for pulsed versus
monochromatic pumps. Nondegenerate-pump schemes offer
some advantages over degenerate-pump schemes, despite the
resulting lower emission rates, especially in relation to the
ability to generate signal and idler photons away from
the Raman gain bandwidth of fused silica [21].

B. Pump power dependence

We now turn our attention to the pump power depen-
dence, while maintaining the pump bandwidths fixed, of
the conversion efficiency. In order to compare sources with
pulsed and monochromatic pumps, we compute the conversion
efficiency as a function of the average pump power together
with, for the pulsed-pump case, a certain value assumed
for the repetition rate which characterizes the pump-pulse
train. We consider the sources described above and vary
the average pump power between 0.05 and 1.0 mW. Under
these conditions, for a repetition rate of f, =80 MHz,
the pump peak power varies within the range 0.75-15 W,
without an appreciable resulting variation of the spectral
properties of the two-photon state. Plots derived from our
expressions [Egs. (19) and (23)] are presented in Fig. 2(a),

42 : : : : s
(@) L 4.7
3.11 .7
L33 &
[
o =
e 2.0 5
O —
— L 1.9
0.9
L 0.5
0.0 . . . . :
0.75 :
(b) -3.80
0.501 1255 =
= =
o T
— S
0.254 L 1.30
e 1005
00050 02 04 06 08 10

average power (mW)

FIG. 2. (Color online) Conversion efficiency as a function of
average pump power, for pulsed- and monochromatic-pump regimes
(denoted by n and n,,, respectively), and for the following con-
figurations: (a) degenerate pumps and (b) nondegenerate pumps.
The red squares and magenta circles are results obtained by
numerical evaluation of Eq. (19), while the solid-black line corre-
sponds to results obtained from analytical expressions described in
Sec. II B.
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from which it is clear that the conversion efficiency n is
linear with pump power. Note that this linear dependence
becomes quadratic, if the emitted flux Ny, rather than the
conversion efficiency, were to be plotted versus average pump
power. This is a different behavior from that observed for the
generation of photons pairs through spontaneous parametric
down-conversion (SPDC) in second-order nonlinear materials,
for which the conversion efficiency versus average power is
constant, while the emitted flux versus pump power is linear.
This is related to the fact that two pumps, rather than one, are
required for SFWM. In fact, this represents one of the essential
advantages of SFWM over SPDC photon-pair sources: while
both processes are spontaneous, in some respects such as pump
power dependence, SFWM behaves as a stimulated process
exhibiting the same pump power dependence as second-order
nonlinear processes such as second-harmonic generation. At
the highest average pump power considered, Eq. (19) predicts
the generation of 2.89 x 10° photon pairs per second. For the
corresponding monochromatic-pump case [see dashed-blue
line in Fig. 2(a)], the number of photon pairs generated for
the highest pump power considered becomes 2.75 x 103 per
second.

For the case of pulsed, nondegenerate pumps we can
analyze two distinct configurations. On the one hand, the
pumps can be nondegenerate in frequency, with the same
bandwidth so that oy = 0, = o, which implies that the
corresponding peak powers are equal, i.e., P} = P,, if we
assume the same repetition rate for both pump modes. The
numerical and analytical results obtained from Egs. (19) and
(21) are shown in Fig. 2(b) (red squares and solid-black
line, respectively). As shown, at the highest average power
considered, around 5.7 x 10% photons per second are emitted.
On the other hand, the bandwidth of the two pump modes
can be different. In this case, for the same average power
and repetition rate, the peak powers are no longer equal, i.e.,
P, # P,. In particular, we consider the limiting case where
the pump bandwidths are highly unequal, i.e., o7 <« o, (or
07 < o01). In Fig. 2(b) we present results for o) = 0.1 and
0y = 3.0 THz, where we assume the same fiber length as above
(numerical, magenta circles; analytical, solid-black line). It can
be appreciated that these unbalanced pump bandwidths lead
to an important reduction in the conversion efficiency n (while
maintaining the average pump power constant). The highest
average pump power considered results in 1.1 x 10% photon
pairs emitted per second. This behavior can be understood from
Egs. (21) and (22), from which we can show that the condition
0] K oy implies that erf[1/ \/§B] « 1. As in previous cases,
we can observe in Fig. 2 that analytical results are in excellent
agreement with numerical ones.

For comparison, the conversion efficiency derived from
Eq. (30) in the monochromatic-pump regime is also shown
in Fig. 2(b) (dashed-blue line). It can be appreciated that
the conversion efficiency in this configuration is several
orders of magnitude lower than for the pulsed-pump case.
Assuming p; = p;, the emission rate at the highest pump
power considered is 2.3 x 10° photon pairs per second. This
is to be compared with a corresponding emission rate of
5.7 x 10® photon pairs per second in the (nondegenerate)
pulsed-pump regime, assuming the same average pump power
and a repetition rate of 80 MHz, when pumps have the same
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bandwidth. Thus, as has been discussed before, the conversion
efficiency in the monochromatic-pump regime tends to be
significantly lower than for the pulsed-pump regime.

C. Pump bandwidth dependence

In this section we turn our attention to the pump-bandwidth
dependence of the conversion efficiency (while maintaining
the energy per pulse, or alternatively the average power and the
repetition rate, in each of the two pump modes constant). We
consider the same source parameters as above. Of course, as o
varies, the pulse temporal duration varies, and consequently the
peak power varies too. We consider first the degenerate-pump
configuration. We evaluate the conversion efficiency from
Eqgs. (19) and (23) for a pump bandwidth o range 0.05—4.0 THz
(which corresponds to a Fourier-transform-limited temporal
duration range 0.59—47.07 ps). Numerical results [obtained
from Eq. (19)] as well as analytical results [from Eq. (23)]
are shown in Fig. 3(a), exhibiting good agreement and, for
small o, a linear dependence of the conversion efficiency on
o . Note that for large values of o, there can be a deviation from
the linear trend apparent in Fig. 3(a). Indeed, large values of
o translate into greater spectral width of the signal and idler
wave packets, with the effect that the linear approximation
of the phase mismatch [upon which Eq. (23) is based] no

(@
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FIG. 3. (Color online) Conversion efficiency as a function of
pump bandwidth, for pulsed and monochromatic pump regimes
(denoted by n and 7., respectively), and for the following configu-
rations: (a) degenerate pumps and (b) nondegenerate pumps. The red
squares are results obtained by numerical evaluation of Eq. (19), while
the solid-black line corresponds to results obtained from analytical
expressions described in Sec. II B. The blue diamonds represent the
conversion efficiency in the limit of monochromatic pumps.
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longer suffices. In the monochromatic limit, evaluation of the
conversion efficiency through Eq. (30) predicts a value of
New = 1.156 x 107!, The blue diamond in Fig. 3(a) indicates
the conversion efficiency in this limit; it is graphically clear that
the conversion efficiency values for o # 0 [calculated from
Eq. (19)] approach the monochromatic-pump limit [calculated
from Eq. (30)].

We now consider the nondegenerate-pump case. We vary
o in the range 0.05-4.0 THz and assume the same fiber
length, average pump power, and repetition rate as for the
degenerate-pump case. Figure 3(b) shows numerical results
indicated by red squares superimposed with analytical results
[from Eq. (21)] indicated by the solid-black line. Let us note
that in this case, the flux dependence versus o is linear for
small o, and exhibits a saturation effect around a specific
value of o to be referred to as oy« In order to understand this
saturation effect, we note that while the pump pulses remain
temporally overlapped (as in the degenerate case discussed
above), the conversion rate has a linear dependence on o.
However, for nondegenerate pumps, the two pump modes
propagate at different group velocities, and the resulting
maximum interaction length is given as in Eq. (31), which
for oy = 0, = o scales as o ~!. This interaction length which
decreases with o offsets the conversion efficiency per unit fiber
length which scales as o, leading to the saturation effect. The
bandwidth at which saturation occurs, opay, 1S defined as the
value of o which makes the argument of the erf function in
Eq. (21) equal to 2 (for which the erf function attains 99.5% of
its maximum value), which leads to the following expression

4

— . 2
e = TR0 (wf) — KD ()| .

In the specific case which we have modeled, opn.,x =
1.58 THz, which is indicated by a vertical dot-dashed line
in Fig. 3(b). As shown in the figure, the largest considered
pump bandwidth leads to a conversion efficiency of 1 =
2.18 x 1078, which corresponds to 5.13 x 107 photon pairs
emitted per second. The corresponding conversion efficiency
obtained when pumps are in the monochromatic limit is
New = 8.7 x 107!2 and is indicated in the figure by the blue
diamond. It is graphically clear that the conversion efficiency
values for o # 0 [calculated from Eq. (19)] approach the
monochromatic-pump limit [calculated from Eq. (30)]. We
note that if the spectral separation between the two pump
modes is not too great, temporal broadening of the pump pulses
due to second-order and higher-order dispersion effects lead
to some overlap between the pulses in the two modes even for
large values of . This implies that under these circumstances,
the conversion efficiency does not reach a strict plateau for
0 > Omax-

Let us note that the behavior of SFWM sources in terms of
the pump-bandwidth dependence of the conversion efficiency
is different from that observed for photon-pair sources based
on SPDC. In the case of SPDC sources, the corresponding
dependence is constant within the phase-matching bandwidth
of the nonlinear crystal. As in the discussion related to
pump-power dependence, SFWM sources behave, in terms of
the observed linear dependence of the conversion efficiency on
pump bandwidth, as a second-order nonlinear stimulated non-
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linear process, such as second-harmonic generation, would.
This has an important consequence: because the spontaneous
Raman scattering flux, which tends to degrade the quality of
the source, exhibits a constant dependence on o [27,28], by
increasing o (which corresponds to shortening the temporal
duration of pump pulses), we can diminish the relative weight
of spontaneous Raman scattering as a fraction of the total
emitted light.

D. Dependence on type and degree of spectral correlations

We have shown in Refs. [6,21,29] that it is possible to
engineer the spectral entanglement properties of photon pairs
generated by SFWM sources. Recent experimental results
[24,30,31] confirm the ability of engineered sources to gen-
erate, in particular, factorable photon pairs. In this context,
it is natural to ask how the conversion efficiency depends on
the type of spectral correlations observed, a question which
represents the focus of this section.

In Ref. [6] we showed that the spectral entanglement
properties of the generated photon pairs can be controlled
by the pump frequency. For a fiber with two zero-dispersion
points within the spectral region of interest, which can be
the case of a photonic crystal fiber (PCF), the generated
signal and idler frequencies form a loop in the space of
generated frequencies versus pump frequency. Each point
around the loop corresponds to a specific angle of orientation
(covering all possible values between 0 and 27 radians) of the
phase-matching function in the space of generated frequencies
{ws,w;}. We will illustrate our discussion considering a
degenerate-pump SFWM source based on a PCF with a core
radius of r = 0.5 um and an air-filling fraction of f = 0.6,
which exhibits zero dispersion points at 0.6592 and 0.8595 um
(note that this is a different fiber geometry from that assumed
for the last three subsections). For a pump wavelength A, =
0.75 pum, we obtained a value of the nonlinearity coefficient of
y = 337km~! W~!, through numerical integration of Eq. (14).
We assume the following choice of parameters: average pump
power of p = 300 uW, pump bandwidth of ¢ = 5 THz, and
fiber length of L =1 m. Let us note that we have assumed
a sufficiently large pump bandwidth, so that the photon-pair
correlations are determined by the phase-matching function
rather than by the pump pulse bandwidth.

Figure 4(a) shows a plot of the Ak = 0 contour (the solid-
black curve) in the {w,, A, ;} space, where the generated fre-
quencies are expressed as detunings from the pump frequency
Ag i = ws,; — w,. Likewise, in this figure the phase-matching
orientation angle (6,;), in the {wy,w;} space, is represented
by the colored background, where it can be seen that this
ranges from 6;; = —90° to 8;; = +90°, indicated in blue and
red, respectively. Note that phase matching occurs within a
range of approximately 200 nm. Here, we will concentrate
on the “outer-branch” solutions (as opposed to the “inner-
branch” solutions which flank the pump frequency, represented
by A,; =0, at a much smaller spectral separation). The
outer branch is sufficiently removed from the pump that
contamination by photons generated by spontaneous Raman
scattering may be avoided.

We compute the conversion efficiency as a function of the
pump frequency, covering the following wavelength range:
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FIG. 4. (Color online) (a) Solid-black curve: phase-matching
(Ak = 0) contour for SFWM in the degenerate-pump case. Colored
background: phase-matching orientation angle. Note that the pump
frequency axis has been labeled with the corresponding wavelength
values. (b) Conversion efficiency as a function of the pump frequency,
varied within the range for which perfect phase-matching occurs.
The inset corresponds to the conversion efficiency 7, expressed as a
function of the orientation angle.

0.666—-0.843 um. Fig. 4(b) shows the conversion efficiency
obtained numerically from Eq. (19) (red squares) and the
conversion efficiency obtained analytically from Eq. (23)
(solid-black line). Because in general to each pump frequency
corresponds a given phase-matching orientation angle value,
these results can be also plotted as a function of the orientation
angle, as shown in the inset of Fig. 4(b). From these results, it
is clear that anticorrelated two-photon states, characterized by
6,; = —45°,1ead to a larger conversion efficiency as compared
to other orientations in {wy,w;} space. The physical reason
for this greater conversion efficiency is that for 6;; = —45°,
the phase-matching function overlaps the pump envelope
function over a wider spectral range, leading to a greater
generation bandwidth which tends to enhance the value of
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the integral in Eq. (19). This behavior is also consistent with
Egs. (21) and (23), where if kD = k;l), which corresponds
to 0;; = —45°, the conversion efficiency diverges (within the
linear approximation of the phase mismatch) and increases
markedly if higher-order terms are taken into account. Note
that the agreement between numerical and analytical results in
Fig. 4(b) is excellent. While we concentrated our discussion
in this section on the degenerate-pump case, very similar
conclusions apply for the nondegenerate case.

IV. CONCLUSIONS

In this paper we have focused on the conversion efficiency
of pump photons into signal and idler photon pairs in the
process of copolarized, spontaneous four-wave mixing in
single-mode optical fibers. We have derived expressions for
the conversion efficiency, defined as the signal-mode, single-
photon flux divided by the pump flux, as a function of all rele-
vant experimental parameters. Our analysis includes on the one
hand both the monochromatic- and the pulsed-pump regimes,
and on the other hand both the degenerate- and nondegenerate-
pump configurations. These expressions are written in terms of
two-dimensional integrals, which for the case of pulsed pumps
we take to closed analytic form under certain approximations.
We present plots of the conversion efficiency as a function
of experimental parameters, including fiber length, pump
power, and pump bandwidth, computed through numerical
integration of our conversion efficiency expressions. We verify
that the corresponding conversion efficiency values computed
from our expressions in closed analytic form, for pulsed
pumps, are in good agreement. We find that the behavior of
the conversion efficiency with respect to pump power and
pump bandwidth is strikingly different from that observed for
spontaneous parametric down-conversion. In particular, the
linear dependence of the conversion efficiency on pump power
(compared to the constant dependence observed for SPDC) and
the linear dependence of the conversion efficiency on pump
bandwidth in the case of degenerate pumps (compared to the
constant dependence observed for SPDC) favor the design
of bright photon-pair sources. We hope that this work will
be useful in the design of fiber-based, photon-pair sources,
for the next generation of quantum-information processing
experiments.
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