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Abstract. From quantum computation to quantum key distribution, many
quantum-enhanced applications rely on the ability to generate pure single
photons. Even though the process of spontaneous parametric downconversion
(SPDC) is widely used as the basis for photon-pair sources, the conditions for
pure heralded single-photon generation, taking into account both spectral and
spatial degrees of freedom, have not been fully described. We present an analysis
of the spatio-temporal correlations present in photon pairs produced by type-I,
non-collinear SPDC. We derive a set of conditions for full factorability in all
degrees of freedom—required for the heralding of pure single photons—between
the signal and idler modes. In this paper, we consider several possible approaches
for the design of bright, fiber-coupled and factorable photon-pair sources. We
show through numerical simulations of the exact equations that sources based
on: (i) the suppression of spatio-temporal entanglement according to our derived
conditions and (ii) a tightly focused pump beam together with optimized fiber-
collection modes and spectral filtering of the signal and idler photon pairs, lead
to a source brightness of the same order of magnitude. Likewise, we find that
both of these sources lead to a drastically higher factorable photon-pair flux,
compared to an unengineered source.
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1. Introduction

The generation of pure single photons represents a crucial enabling step for many quantum-
enhanced applications, ranging from secure quantum key distribution to quantum computation.
In particular, linear optical quantum computation relies on the ability of multiple independently
generated single photons to interfere (for example, see review [1]). This ability to interfere can
be reduced, or even suppressed, if the single photons are described by a statistical mixture of
spatio-temporal modes [2]. Single photons may be generated on-demand by individual quantum
emitters, such as quantum dots (for example [3]) and color centers (for example [4]), or they
may be heralded from photon pairs generated through a spontaneous parametric process, i.e.
downconversion [5] and four-wave mixing [6]. In the latter case, it has been shown that single
photons in pure quantum states may be heralded only from photon pairs with a factorable
joint amplitude [2]. The phasematching and energy conservation constraints in spontaneous
parametric processes imply, however, that the resulting photon pairs are, for typical source
designs, highly entangled in spatio-temporal degrees of freedom. In this case, the typical
solution is to resort to spatial and spectral filtering, in order to effectively generate single-
mode downconverted photons. This is achieved, however, at the cost of a considerable reduction
of the source brightness. The spontaneous nature of typical photon-pair sources implies that
filtering can lead to prohibitively low count rates. This becomes a crucial issue for experiments
relying on simultaneous generation of two or more photon pairs (for example, see [7]–[12]).
An enhancement of r in the single-crystal factorable photon-pair brightness becomes an
enhancement of r 2 for a dual-crystal, four-photon source and r N for an N -crystal, 2N -photon
source. Sources leading to r values in the hundreds or the thousands could therefore represent a
significant step towards practical quantum information processing implementations based on
photons. In previous work, various recipes have been proposed, some of which have been
demonstrated experimentally, for generation of factorable photon pairs through spontaneous
parametric processes [13]–[21]. In the present paper, we investigate sources of factorable, fiber-
coupled photon pairs, concentrating on the attainable brightness.

Several groups have demonstrated bright, fiber-coupled, photon-pair sources based on the
process of spontaneous parametric downconversion (SPDC) (for example, see [22]–[25]). In
the present work, our objective is to develop experimentally feasible techniques that may lead
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to bright sources of fiber-coupled photon pairs, which also exhibit factorability in all photonic
degrees of freedom. We thus present in this paper, to our knowledge, the first comprehensive
analysis of the simultaneous optimization of the source brightness and the degree of factorability
in fiber-coupled, SPDC photon-pair sources. We concentrate on non-collinear, degenerate
type-I SPDC where the pump beam is allowed to be broadband, with each spectral component
described, spatially, by a Gaussian beam. A monochromatic pump introduces strict spectral
correlations and thus precludes photon-pair factorability [13]. Indeed, techniques for factorable
photon pair generation tend to require femtosecond-duration pump pulses. We have previously
shown that the relaxation of a monochromatic plane-wave pump to a broadband Gaussian beam
pump, which contains a spread of k-vectors, greatly enhances the photon-pair engineering
possibilities. Indeed, a source that involves: (i) a pump containing a spread of transverse
k-vectors, and (ii) group velocity matching between the pump and signal/idler modes, may
be exploited to achieve a specific balance of transverse and longitudinal phasematching, which
can result in factorable photon pairs [27, 28]. In [27], however, our conditions for factorability
implicitly assume that the SPDC light is spatially filtered in such a way that only a single
direction of propagation may reach the detectors. It can be shown that in most cases, the
presence of even a small range of directions of propagation allowed to reach the detectors can
reduce or even suppress the attainable factorability [28]. In this paper, we explain this behavior
as resulting from photon pair correlations involving the spatial degree of freedom. Additionally,
we identify a new expanded set of conditions for full spatio-temporal factorability that takes into
account a realistic detection arrangement, such as coupling into single-mode fibers. We present
results that show that the fulfillment of this expanded set of conditions indeed leads to photon
pairs that approach full spatio-temporal factorability.

We compare two possible routes to bright, factorable and fiber-coupled photon-pair
sources. On the one hand, we consider the above-described source, engineered for the
suppression of most spatio-temporal correlations. For typical crystals, the requisite vector group
velocity matching leads to the need for large signal/idler propagation angles. On the other
hand, we also consider sources which have not been engineered for the suppression of spatio-
temporal correlations and which involve typical values (smaller with respect to the engineered
source) for the signal/idler propagation angles. For this second category of source, however,
we allow the pump beam to be tightly focused at the crystal, and we likewise optimize the
fiber-collection modes so as to maximize the resulting overlap with the generated modes. In
order to eliminate spectral correlations between the fiber-coupled signal and idler modes, we
also allow the use of spectral filters for the second category of source. Spatial correlations
that tend to be enhanced at larger angles of emission are mostly suppressed for the engineered
source; however, those spatial correlations that remain imply that the overlap of the emitted
modes and the fiber-collection modes is reduced with respect to the ideal case of full spatio-
temporal factorability. We present numerical simulations that indicate that the net effect is that
the two categories of source considered lead to a brightness of the same order of magnitude and
drastically higher than for an unengineered source.

2. The two-photon state and factorability

We consider for the present analysis a type-I, non-collinear source of SPDC photon pairs.
We model the broadband pump beam as a chromatic superposition of single-frequency Gaussian
beams, with a coincident beamwaist of radius w0 and a coincident central direction of
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Figure 1. (a) Schematic diagram of the photon-pair source, showing the
nonlinear crystal, pumped by a Gaussian beam. The refracted signal and idler
modes are coupled into separate optical fibers. (b) Transverse section of the
source, looking at the pump beam. The pump walk-off and central directions
of propagation for collected signal and idler modes are indicated.

propagation. We assume a spectral weighting factor for the pump given by a Gaussian function
with bandwidth � and central frequency !p0. Likewise, we assume that the crystal has transverse
dimensions much larger than the pump beam waist and that the crystal effective nonlinearity d is
constant within the crystal. The signal and idler modes are assumed to be coupled into separate
single-mode fibers. Fiber-collection modes are described by Gaussian beams, with their beam
waists at the output face of the nonlinear crystal. Figure 1(a) presents a schematic of the source,
where we have indicated some of the defining parameters: crystal length L , pump Gaussian
beam radius at the beam waist w0, angle of orientation of the fiber-collection modes ✓f (chosen
so as to maximize the overlap between the fiber-collection modes and the signal and idler modes,
refracted from the crystal into free space), fiber-collection mode radius at the beam waist wf and
fiber-collection mode height h on the crystal’s output face. We take into account the existence
of transverse spatial walk-off for the pump beam (for a negative uniaxial crystal, the generated
photons are ordinary rays and therefore do not exhibit spatial walk-off). The coordinate system
to be used is chosen so that the z-axis is parallel to the pump beam and the y-axis is parallel
to the projection of the pump walk-off direction along the transverse plane (see figure 1(b)). �0

indicates the azimuthal orientation of the detection plane formed by the central directions of
propagation of the two fiber-collection modes.

2.1. The two-photon quantum state

The electric field amplitude associated with the pulsed pump beam is described classically as a
superposition of single-frequency Gaussian beams as follows:

Ep(Er , t) = (2⇡)3 Ap

Z
d!p ↵(!p) ei(kp(!p)z�!pt)GB(x, y + (z + L) tan ⇢0, z � z0 + 1

2 L; !p) (1)
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in terms of the Gaussian-beam spatial distribution ApGB(Er; !), and the pump spectral amplitude
↵(!), assumed to be well described by a Gaussian function, centered at !p0 with width �

↵(!) = exp

�(! � !p0)

2

� 2

�
. (2)

The Poynting vector walk-off of the pump beam, quantified by the walk-off angle ⇢0, is assumed
to be parallel to the z–y-plane. The coefficient Ap, with units of electric field per second, is
related to the energy per pulse Up; for a weakly focused Gaussian beam, it is given according to
the following formula:

A2
p = 2

p
2Up

⇡
p

⇡(2⇡)7c✏0�w2
0

. (3)

We have assumed that the beamwaist for the Gaussian beam associated with each
pump spectral component is located at position z = z0, measured with respect to the crystal
middle plane. Here, the function GB(Er; !) represents the paraxial Gaussian beam electric field
amplitude,

GB(x, y, z; !) = 1
1 + i z

zR

exp

2

4� x2 + y2

w2
0

⇣
1 + i z

zR

⌘

3

5 , (4)

where zR is the Rayleigh range, expressed in terms of the radius at the beamwaist w0, as
zR = kpw

2
0/2. Note that while the function GB(x, y, z; !) can exhibit frequency dependence

(through parameters w0 and zR), in this paper we approximate this function to be frequency
independent (this approximation is well justified for typical pump bandwidths), evaluating it
at the central pump frequency. Following a standard perturbative approach, the quantum state
produced by spontaneous SPDC may then be expressed as

|9i = |vaci + ⌘

Z
dEks

Z
dEki F(Eks, Eki) â†

s (
Eks)â

†
i (

Eki)|vaci. (5)

Here, F(Eks, Eki) represents the two-photon wavevector joint amplitude, and ⌘ is a constant
given by ⌘ = (4⇡ 2✏0/h̄)d Lw2

0 Ap. The joint amplitude can in turn be expressed as

F(Eks, Eki) = `(Eks)`(Eki)↵(!s + !i)�( Eks, Eki), (6)

in terms of the function `(Ek) = [h̄!/(✏0n(Ek)2)]1/2 and the phasematching function

�(Eks, Eki) = exp
✓

i
|k?|2
2kp

z0

◆
exp

⇥
i 1

2 L(1k + k?y tan ⇢0)
⇤

exp
�� 1

4w
2
0|k?|2� sinc

�
1
2 L1k

�
. (7)

Here, we have made the following definitions (an underlined symbol indicates a two-
dimensional transverse vector) in terms of the Cartesian components of the signal and idler
wavevectors:

k? ⌘ (ksx + kix , ksy + kiy), (8)

1k ⌘ kp � |k?|2
2kp

� ksz � kiz + k?y tan ⇢0. (9)

Note that the wavevectors in the two-photon state above refer to internal wavevectors in the
crystal; refraction into free space is taken into account below, in the context of fiber coupling of
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the signal and idler photon pairs. The crystal cut orientation is selected so that the signal photon
is centered at a frequency !s0, with this frequency component emitted in a direction given by
polar angle ✓s = ✓s0; likewise, the selected crystal cut orientation is assumed to be such that
the central emission frequency for the idler photon is !i = !p � !s0 = !i0, with this frequency
component emitted at polar angle ✓i = ✓i0.

2.2. Photon pair factorability and single-photon purity

While in the process of SPDC, photon pair emission occurs at random times, quantum
information processing protocols require ideally on-demand generation of single photons, or
at least emission of single photons at verifiable times. One way to counteract the characteristic
randomness of SPDC photon pair emission is to detect one of the two photons so as to herald
the existence of the conjugate photon. However, measuring part of an entangled state—in this
case one of the two photons—leaves the remaining part—in this case the other photon—in a
quantum-mechanically mixed state. Mathematically, tracing over one part of a quantum state
leaves the remaining part in a statistical mixture of the allowed modes. This is an important
limitation, because highly quantum-mechanically mixed single photons cannot interfere with
other single photons, a key requirement for the implementation of quantum information
processing protocols.

The single-photon mixedness referred to above occurs in the degrees of freedom available
to the photons and in which photon-pair entanglement resides. Nonlinear optical sources may be
entangled in a number of degrees of freedom including polarization, frequency and transverse
momentum, which leads to the need for careful source design in order to avoid heralded single-
photon mixedness. Note that it is straightforward to design SPDC photon pair sources that are
unentangled in polarization, a design characteristic of all sources considered in this paper. In
addition, we are particularly interested in fiber-coupled photon pair sources, where each of the
two single-photons is coupled into a single-mode fiber, leading to the projection of the quantum
state into specific transverse modes. While this projection necessarily suppresses entanglement
in the transverse momentum degree of freedom, it can lead to an important reduction in source
brightness if the generation and fiber-collection modes are not well matched to each other. As
will be discussed below, this means that it is crucial to engineer the source so that photon
pairs exhibit the best possible overlap with the fiber-collection modes and thus optimize the
fiber-collection efficiency and the resulting source brightness.

Following from the above arguments, for the type of source of interest in this paper,
frequency represents the only remaining degree of freedom where entanglement may reside.
One way to suppress the resulting spectral (temporal) mixedness in the heralded single photon
is to spectrally or temporally filter the herald photon, at the expense of the heralded photon flux.
Another possibility is to spectrally or temporally filter the heralded photon, at the expense of an
increased vacuum contribution, i.e. of a reduced heralding efficiency. In this paper, we explore
experimental techniques that may be used for attaining photon pair factorability, based on two
different strategies: (i) engineering photon pair sources in order to suppress entanglement at the
source and (ii) the use of spectral filtering.

In general, the quantum state of the downconverted photons is said to be separable, or
factorable, if F(Eks, Eki) = S(Eks)I (Eki), i.e. if the two-photon wavevector joint amplitude can be
written as the product of two functions, S(Eks) and I (Eki), each one a function that depends
solely on the variables of one of the two photons. Formally, the degree of factorability can be
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quantified by the inverse Schmidt number K �1 [26] or alternatively the degree of entanglement
can be quantified by the Schmidt number K (where K ! 1 denotes a maximally entangled
state and K = 1 denotes a perfect factorable state). The purity can be quantified as Tr(⇢̂s

2
),

where ⇢̂s = Tri(|9ih9|) represents the density operator for the heralded single photon in the
signal mode and where Tri represents a partial trace over the idler mode. The relationship
obeyed between K and Tr(⇢̂s

2
) is Tr(⇢̂s

2
) = K �1, so that perfect heralded single-photon purity

requires a factorable two-photon state [2]. Also, note that a monochromatic pump at !p leads to
a one-to-one relationship between the signal-mode frequency !s and the corresponding idler
frequency !p � !s and therefore to maximal spectral entanglement; according to the above
argument, this in turn leads to a highly mixed heralded single photon. Because we are interested
in the generation of pure heralded single photons, the search for the experimental conditions
under which we might generate fiber-coupled, factorable signal and idler photon pairs, while
maintaining the largest possible brightness, is the key motivation behind this paper.

2.3. Conditions for factorability of the two-photon state

We can write the wavevectors in terms of their Cartesian components expressed in spherical
coordinates, i.e. Ekµ = [n(!µ)!µ/c]k̂µ(✓µ, �µ), where

k̂µ(✓µ, �µ) = (sin ✓µ cos �µ, sin ✓µ sin �µ, cos ✓µ). (10)

We also define wavevectors Ekµ0 (with µ = s, i) as the wavevectors corresponding to the
central values !µ0, ✓µ0, and �µ0. In this manner, the wavevector joint amplitude may be
expressed as a function of six variables, corresponding to the frequency !µ, polar angle ✓µ

and azimuthal angle �µ, for each of the two photons (µ = s, i),

F(Eks, Eki) ! F(!s, ✓s, �s; !i, ✓i, �i). (11)

The problem of finding an optimum region in parameter space for generating factorable
photon pairs turns out to be difficult, since the wavevector joint amplitude given by equation (6)
depends on six variables and on a large number of parameters. It has been shown theoretically
and experimentally that the expansion to first order in transverse wavenumber and frequency
of the joint amplitude function, and the substitution of the sinc function in equation (6) with
an appropriately chosen Gaussian function, yields a description of the two-photon state that
in some respects is sufficiently accurate, even for SPDC configurations with Poynting-vector
walk-off [29, 30]. The advantage of these approximations is that it becomes straightforward to
carry out further analytic calculations. In particular, it becomes possible to derive the conditions
for factorability of the two-photon state. Note that while we use the conditions for factorability
as a guide for the selection of experimental parameters, our numerical calculations shown below
are based on the full two-photon state, without resorting to approximations.

We will proceed as follows. As a first step, we will derive general conditions that ensure
factorability of the photon pairs under the approximations described in the previous paragraph.
As a second step, these conditions will be used for obtaining a specific source design, i.e.
specific values for all relevant source parameters, predicted (by the conditions derived in
step 1) to yield factorable photon pairs. As a third step, we will verify numerically that the
source design obtained in step 2 indeed yields photon pairs that approach full spatio-temporal
factorability. Note that for this third step, we rely on the full two-photon state, without resorting
to approximations.
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Specifically, in order to write the joint amplitude entirely in terms of exponential
functions, we use the approximation sinc(x) ⇡ exp(�� x2), with � ⇡ 0.193 selected so
that the two functions have an identical full-width at half-maximum. Next, we write the
argument of the resulting Gaussian function as a first-order Taylor series in the six variables
{!s, ✓s, �s, !i, ✓i, �i}, around the central values for each of these variables. Thus, in writing the
argument of the joint wavevector amplitude, expressed fully in terms of an exponential function,
as a power series of the six variables around the corresponding central values, any mixed terms
between a variable of one photon and a variable corresponding to the other photon indicate the
presence of entanglement between the signal and idler modes.

The analysis for a general plane of detection characterized by angle �0 leads to
complicated expressions. In the appendix, we present the specific case of �0 = 0, on which the
factorability analysis below is based. We have found that for the crystal lengths considered here
(e.g. L = 300 µm) the effect of walk-off on the resulting two-photon state is negligible.

The resulting expression for the wavevector joint amplitude is expressed in terms of the
variables �µ ⌘ !µ � !µ0, 2µ ⌘ ✓µ � ✓µ0 and 8µ ⌘ �µ � �µ0. The factorability conditions arise
from imposing a vanishing coefficient for each mixed term of the form As Bi (or Ai Bs), with
A, B = �, 2. These conditions are as follows:

Condition 1: k 0
s = k 0

p cos ✓s0, (12)

Condition 2: k 0
i = k 0

p cos ✓i0, (13)

Condition 3:
w2

0

� L2
= � tan ✓s0 tan ✓i0, (14)

Condition 4: �p & � , (15)

where � represents a threshold bandwidth, which if exceeded implies that the joint amplitude of
the two-photon state is determined by the longitudinal and transverse phasematching properties,
independently of the pump bandwidth. In those cases where the signal and idler photons are
each projected to a specific single spatial mode (e.g. fiber-collection modes), the two-photon
state becomes a function only of the frequencies !s and !i. Under these circumstances, we
may calculate the threshold bandwidth � as the full-width at half-maximum of the functionR

d!�| f (!+, !�)|2, where the function f represents the joint amplitude projected to specific
spatial modes, in the limit of infinite pump bandwidth, expressed in terms of the variables
!± = !s ± !i.

Note that correlations involving the azimuthal angle variables 8µ cannot be made to vanish.
However, they may be limited by reducing the detection angular spread. Indeed, if the following
condition, shown for frequency degenerate SPDC where k = |Eks| = |Eki| and ✓0 = ✓s0 = ✓i0, is also
fulfilled,

Condition 5: 82
max(�⇢2L2 + w2

0).
1

k2 sin2 ✓0
, (16)

where 8max represents the maximum spread of azimuthal angles around the central directions of
signal and idler propagation, then correlations involving the azimuthal angle variables become
negligible. Of course, in addition to conditions 1–5, phasematching must be observed, i.e.
1k = 0 (see equation (9)) for the central generation frequencies and directions of propagation.

Conditions 1 and 2 refer to vector group velocity matching: specifically, the longitudinal
component of the signal and idler group velocities is made equal to the pump group velocity.
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Figure 2. Effective spectral correlation diagrams for type-I non-collinear SPDC.
Here, part (a) shows direct spectral correlations and parts (b)–(d) show indirect
spectral correlations involving the polar angle variables. Omitted from this figure
are effective spectral correlations involving azimuthal angle variables.

Of course, in the case of frequency-degenerate SPDC, these two conditions become a single
condition. Condition 3 refers to a constraint on the physical dimensions of the source (crystal
length and pump beam radius at the beamwaist), together with the angles of propagation. In
common with other techniques for factorable photon-pair generation, the present technique
requires a broadband pump, with a bandwidth exceeding the threshold presented in condition 4.

The joint intensity |F(!s, ✓s, �s; !i, ✓i, �i)|2 may exhibit correlations between any two of
its six arguments. We refer to correlations between variables corresponding to different photons,
which of course contribute to photon-pair entanglement, as ‘external’ correlations. Likewise, we
refer to correlations between two variables corresponding to the same photon, which do no not
contribute to entanglement, as ‘internal’ correlations. A photon-pair source can, in general, be
described by a joint amplitude that includes all of the above correlations.

In previous work, we have derived conditions for the suppression of spectral correlations
in non-collinear type-I spontaneous PDC [27, 28]. However, in that work we did not consider
the effect of correlations involving spatial variables (angles ✓µ and �µ in equation (10)) on the
effective spectral correlations for a given detection arrangement. Assuming that correlations
between azimuthal angle variables and polar angle/spectral variables can be neglected (these
tend to be weak), figure 2 shows the possible scenarios that may result in the appearance
of effective signal–idler spectral correlations. Figure 2(a) shows direct spectral correlations,
which can be made to vanish if the conditions derived in [27] are fulfilled. However, as shown
schematically in figures 2(b)–(d), effective correlations may arise in the following two scenarios:
(i) the existence of internal !–✓ correlations, in conjunction with external ✓–✓ correlations, and
(ii) the existence of external !–✓ correlations in conjunction with internal !–✓ correlations [39].
Such effective spectral correlations require a spread of detection wavevectors, i.e. a range of ✓
and � values. One way to suppress these correlations is by restricting the spread of detection
k-vectors through spatial filtering. A superior solution, which does not lead to a reduction of
brightness, is the suppression of correlations involving spatial (angular) variables at the source.
In this paper, we have derived conditions that result in the suppression of external correlations
in all photonic degrees of freedom. For a source that fulfills these conditions, the spread of
detection k-vectors may be increased without the appearance of effective spectral correlations.

As an illustration, let us consider a �-barium borate (BBO) crystal pumped by a train
of ultrashort pulses centered at 405 nm, generating frequency-degenerate SPDC photon pairs,
centered at 810 nm. The internal angle of emission at which vector group velocity matching
occurs (computed from conditions 1 and 2 above) can be verified to be ✓s0 = �✓i0 = 9.96�. Note
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Figure 3. Plots of the joint intensity, |F(!s, ✓s, �s; !i, ✓i, �i)|2, where four
of the six variables are made constant, versus the remaining two. These
plots show external correlations between the following pairs of variables: (a)
generated frequencies (�s–�i), (b) polar angles (✓s–✓i), (c) wave length and polar
angle (✓s–!i) and (d) azimuthal angles (�s–�i). Azimuthal correlations can be
suppressed by limiting |8s| and |8i| to values 6 1 degrees as shown by the
inner red-dashed-line square. The outer white-dotted-line square refers to the
azimuthal-angle fiber acceptance, as discussed below in section 3.

that while this is a large angle of emission that leads to some difficulties (as will be discussed
below), other typical crystals including BIBO, PPKTP and PPLN lead to even larger vector
group velocity matching angles. For this angle of emission, and for the selected central emission
frequency, the required crystal cut angle required to attain phasematching is ✓pm = 40.7� (we
also assume that the crystal is oriented such that the pump and the crystal axis have a relative
azimuthal orientation of 30�, so that the effective nonlinearity can attain its maximum value).
Assuming a crystal length of L = 300 µm (we will present below a criterion for choosing the
crystal length), condition 3 then results in a required pump beam radius of w0 = 23.2 µm. The
fulfillment of conditions 1–4 results in a two-photon state, which is essentially factorable in the
spectral and polar angle degrees of freedom. The pump bandwidth is selected so that condition
5 is fulfilled (this will be discussed in greater detail in section 3).

This factorability may be appreciated in figure 3, where we present plots of correlations
between particular pairs of variables for the signal and idler photons. In each panel, four
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of the six variables in the joint intensity |F(!s, ✓s, �s; !i, ✓i, �i)|2 are made equal to their
central values, while plotting versus the remaining two variables. Figure 3(a) shows spectral
!s–!i correlations; figure 3(b) shows polar angle ✓s–✓i correlations; figure 3(c) shows mixed
spectral–spatial !i–✓s correlations; figure 3(d) shows azimuthal angle �s–�i correlations. Note
that while our analysis that results in the conditions for factorability (equation (A.13)) relies on
the Gaussian approximation of the phasematching function and on a power series expansion,
the plots in figure 3 were computed without any approximations.

As expected from the fulfillment of conditions 1–4, spectral, polar angle and mixed
spectral–polar angle correlations are essentially suppressed. Azimuthal correlations cannot be
made to vanish; however, by restricting the directions of propagation that are allowed to reach
the detectors, these correlations may be essentially suppressed. This is illustrated by the red
dashed line in figure 3(d), which corresponds to limiting azimuthal angles to |8s|, |8i|6 1
degrees. Note that mixed spectral–polar angle correlations !i–✓s are similar to those shown
in figure 3(c). Correlations between azimuthal angle variables and polar angle/frequency (not
shown) are, for this particular source, essentially negligible.

2.4. Fiber-coupled two-photon state and flux

We are interested in studying the spectral properties of photon pairs coupled into separate
single-mode fibers for the signal and idler modes (see figure 1(a)). To this end, it is instructive
to consider the modes that would result from light exiting the fibers into free space through
coupling lenses, and propagating backwards towards the crystal. According to our analysis
below, and in agreement with intuition, the joint amplitude for the fiber-coupled photon pairs
is given by the mathematical overlap between the fiber-collection modes in free space and the
pre-fiber-coupling joint amplitude (see equation (24)) [31]–[33]. In this paper, we model the
fiber-collection modes as Gaussian beams. Of course, the position and orientation of the fiber-
collection modes must be selected to match the position and orientation of the signal and idler
modes, refracted from the crystal into free space. Note that for SPDC photons propagating in a
single-transverse mode environment, entanglement involving the spatial degrees of freedom
is suppressed, leaving frequency as the only continuous-variable degree of freedom where
entanglement may reside. As will become clear below, while spatial and mixed spectral-spatial
entanglement cannot survive fiber-coupling, the degree of overlap between emission and fiber-
collection modes can limit the resulting source brightness.

It is convenient to introduce single-photon states |!iFµ (with µ = s, i) defined in terms of
a specific superposition of plane waves, corresponding to the fiber collection modes

|!iFµ = b̂†
µ(!)|vaci, (17)

where the annihilation operator b̂µ(!) is defined in terms of the weighting factor ũµ(Ek)

b̂µ(!) =
Z

|Ek|=!/c
d2k ũµ(Ek)âµ(Ek), (18)

and the integral is carried out over all wavevectors with magnitude !/c. Imposing the standard
commutation relationship between b̂µ(!) and b̂†

µ(!) leads to the following normalization
constraint: Z

|Ek|=!/c
d2k |ũµ(Ek)|2 = 1. (19)
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In the specific case where the fiber collection modes can be adequately described as
Gaussian beams [31]–[33], the weighting factors ũµ(Ek) may be written as

ũµ(Ek) = ũ0(!, ✓0) exp
�� 1

4w
2[sec2 ✓0(kx � kµ sin ✓0)

2 + k2
y]

�
eihkx , (20)

where we have neglected certain terms associated with diffraction of the fiber-collection modes
and where we have assumed that the fiber-collection modes are centered at �0 = 0. Here, the
Gaussian-beam electric field spatial distribution is tilted at an angle ✓0, laterally shifted by
distance h and evaluated on the second face of the crystal. The function ũ0(!, ✓0) represents
a normalization coefficient.

The fiber-coupled two-photon state |9iC can then be written as

|9iC = 5̂|9i (21)

in terms of the projection operator 5̂ defined as

5̂ = 1
c2

Z
d!s |!siFsh!s|Fs ⌦

Z
d!i |!iiFih!i|Fi. (22)

By substituting equations (5) and (22) into equation (21), we can write the fiber-coupled
two-photon state as

|9iC = |vaci +
⌘

c2

Z
d!s

Z
d!i f (!s, !i) |!siFs|!iiFi, (23)

where the resulting fiber-coupled joint spectral amplitude f (!s, !i) is calculated in terms of the
fiber modes ũµ(Ekµ) and the wavevector joint amplitude in free space F

f

(Eks, Eki) as

f (!s, !i) =
Z

|Eks|=!s/c
d2ks

Z

|Eki|=!i/c
d2ki F

f

(Eks, Eki) ũ⇤
s (

Eks)ũ
⇤
i (

Eki). (24)

Note that the free-space joint amplitude F
f

(Eks, Eki) is obtained from the intra-crystal
joint amplitude F(Eks, Eki) by substituting each polar angle with its refracted version, i.e.
✓µ ! arcsin(sin(✓µ)/n(Ek)) with µ = s, i. The number of photon pairs produced per pump pulse,
and coupled into separate fibers for the signal and idler modes, can then be easily computed as

N =
Z

d!s

Z
d!ih9|C b̂†

s (!s)b̂
†
i (!i)b̂i(!i)b̂s(!s) |9iC

= ⌘2

c2

Z
d!s

Z
d!i | f (!s, !i)|2. (25)

Another quantity of interest is the heralding efficiency, defined as N/Ns where Ns

represents the signal-mode detection rate, which includes signal-mode detection events for
which no corresponding idler photon is detected. The heralding efficiency represents the
probability that a single photon is present in the idler-mode fiber, conditioned on the presence
of a single photon in the signal-mode fiber [34]. It may be shown that Ns is given as follows:

Ns = ⌘2

c2

Z
d!s

Z
d!i

Z

|Eki|=!i/c
d2ki

����

Z

|Eks|=!s/c
d2ksũ

⇤
s (

Eks)F
f

(Eks, Eki)

����
2

. (26)

Note that it can be shown from equations (25) and (26) that in the strong spatial filtering
limit where only a single k-vector for each of the signal and idler modes is retained, N/Ns can
approach unity. This, however, has limited practical relevance, since strong spatial filtering is
incompatible with an optimization of the source brightness.
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We now develop an approximate expression for the brightness, which leads to greater
physical insight. From equation (25) and for a sufficiently small emission bandwidth, we may
write N ⇡ ⌘21!s1!i| f (!s0, !i0)|2/c2 in terms of the signal-mode emission bandwidth 1!s

and the idler-mode emission bandwidth 1!i. This leads to the following approximate expression
for the source brightness,

N ⇡ 1

2
p

2⇡
9
2 ✏0c7

!6
0d2UpL2w2

0
1!s1!i

�
S0|O0|2, (27)

in terms of the following definitions, S0 ⌘ S (!s0, !i0) and O0 ⌘ O(!s0, !i0), with

S (!s, !i) ⌘
Z

Cs

d2ks

Z

Ci

d2ki|F̂(Eks, Eki)|2, (28)

O(!s, !i) ⌘
Z

Cs

d2ks

Z

Ci

d2ki F (Eks, Eki) ũ⇤
s (

Eks)ũ
⇤
i (

Eki). (29)

In the above two equations, Cµ (with µ = s, i) represents an area of transverse wavevector
space, defined by the fiber acceptance. Also, we have defined F̂(Eks, Eki) ⌘ F(Eks, Eki)/F(Eks0, Eki0)
and F (Eks, Eki) represents the joint wavevector amplitude, normalized so that

Z

Cs

d2ks

Z

Ci

d2ki|F (Eks, Eki)|2 = 1. (30)

The quantity |O(!s, !i)|2 is constrained to take values 06 |O(!s, !i)|2 6 1 and represents
the degree of overlap between the SPDC emission mode and the fiber collection modes; while
a value of 0 indicates no overlap, a value of 1 indicates perfect overlap. Note that because
O(!s, !i) is dependent on Cs and Ci, in order to meaningfully compare different sources in
terms of their respective degrees of overlap, a consistent definition of Cs and Ci should be used.
Note that |O(!s, !i)|2 = 1 implies that the emission mode is identical to the fiber-collection
modes; since the function ũ(Eks)ũ(Eki) is factorable, this means that the photon-pair state must
be engineered to be factorable in order to ensure the highest possible rate of photon-pair fiber
coupling. S (!s, !i) is related to the extent, in transverse signal and idler wavevector space,
of the emitted state. More precisely, this quantity represents the (frequency-dependent) extent,
in transverse signal and idler wavevector space, of an equivalent rectangular function (in place
of |F̂(Eks, Eki)|2) with the same value of the integral which defines S (!s, !i). Note that in cases
where the function F̂(Eks, Eki) is factorable, i.e. where F̂(Eks, Eki) = S(Eks)I (Eki), this becomes

S =
Z

d✓s

Z
d�s sin ✓s|S(Eks)|2

Z
d✓i

Z
d�i sin ✓i|I (Eks)|2 = �s�i. (31)

Here, �s ⌘ R
d✓s

R
d�s sin ✓s|S(Eks)|2 (and similarly for the idler photon) may be interpreted

as an effective emission solid angle. Note that equation (27) is consistent with intuition: the
source brightness is proportional to the emission bandwidth, to the source transverse wavevector
extent and to the degree of overlap between the emission and fiber-collection modes. Note that
if we increase the emission bandwidth by a factor a, in general we also need to increase the
pump bandwidth by a factor a to maintain factorability. This makes the factor (1!s1!i)/�
(and therefore the source brightness while imposing factorability) linear in the SPDC emission
bandwidth.

We see from this that the brightness per mode (spectral and spatial) and per unit pump-pulse
energy Nm ⌘ N/(1!s1!iS Up) for two sources centered at the same frequency, involving
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crystals of the same length, and pump beams with identical radii, depends on d2 (over
which we have no control for a given choice of crystal), on � that is tied to the emission
bandwidth to guarantee factorability and therefore cannot be changed freely and on the degree
of overlap |O|2. Thus, Nm is controlled basically by the degree of overlap, independently of the
specific technique used for source optimization. Note that this limits the scope for brightness
optimization for engineered versus unengineered sources.

3. Results and discussion

In order to compare the performance of various sources of interest, in this section we present the
results of numerical simulations leading to values for the heralded single-photon purity and the
source brightness. Note that while we use the factorability analysis resulting from the Gaussian
and first-order approximations of section 2.3 as a guide for the selection of values for the various
experimental parameters, all numerical simulations to be shown here are based on the full
two-photon state, without resorting to approximations.

For all the sources considered here, we assume a pump centered at 405 nm, which
can be obtained through second harmonic generation from a Ti:sapphire oscillator, with
frequency-degenerate signal and idler photon pairs centered at 810 nm. We wish to compare
the performance of the engineered source of section 2.3 with an unengineered source. In order
to make this comparison as useful as possible, we assume the same type of crystal (i.e. BBO),
the same crystal length (L = 300 µm) and the same energy per pump pulse (6.25 ⇥ 10�9 J),
which corresponds to a pump power of 500 mW at a repetition rate of 80 MHz, for both
categories of sources. The engineered source relies on vector group velocity matching for the
suppression of spatio-temporal entanglement. Such group velocity matching occurs for large
signal/idler propagation angles (9.96�, internal, for the example in section 2.3). We also consider
a source, to be referred to as unengineered, which involves propagation angles similar to those
used in several recent experiments (see, for example, [35]) and which we consider as typical.
Specifically, for this source we assume an internal propagation angle (i.e. prior to refraction
at the crystal–air interface) of 2�. As its name suggests, for this source we make no effort to
engineer the spatio-temporal properties of the photon pairs. Likewise, no effort is made to tailor
the SPDC emission mode to the fiber-collection modes: we assume a weakly focused pump
beam with a radius at the beamwaist of w0 = 1 mm. The required crystal cut angle for this
source is ✓pm = 29.33�, and we assume that the crystal is oriented so that the pump and the
crystal axis have a relative azimuthal orientation of 30�.

For the unengineered source, we consider two additional variants: (i) an unengineered
source for which the fiber-coupled signal and idler modes are spectrally filtered to render the
photon pairs nearly factorable, and (ii) in addition to the presence of SPDC spectral filtering,
the pump beam is focused to the same degree as for the engineered source, and the width of the
fiber collection modes is optimized for maximum source brightness. We refer to the latter two
sources as UF (for unengineered, filtered) and UFF (for unengineered, pump-focused, filtered).

For each source configuration, the pump bandwidth is selected as � = 2.0 ⇥ � , where
� refers to the bandwidth corresponding to the threshold value from our condition 4 above
(see section 2.3). The factor of 2.0 ensures that the two-photon properties are defined by the
phasematching properties, tailored for factorability, rather than by the pump bandwidth. Note
that conditions 1–3 (see equations (12)–(14)) ensure factorability in the infinite pump bandwidth
limit. Thus, a larger pump bandwidth (than � defined in the context of condition 4) could lead
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Table 1. This table shows the parameters (pump beam radius w0, fiber-collection
mode radius w f , pump bandwidth � and signal/idler filter bandwidth 1�) that
define each of the four sources considered: engineered, unengineered, UF and
UFF. The value of the fiber-collection mode radius wf shown corresponds to that
which maximizes the brightness for each of the sources. Note that ‘–’ indicates
that no value applies.
Source w0 (µm) wf (µm) � (THz) 1� (nm)

Engineered 23.1 21.5 142.2 –
Unengineered 1000 14.3 91.1 –
UF 1000 14.3 46.7 15.3
UFF 23.1 11.4 51.0 17.5

to a greater degree of factorability, although in practice this is limited by the available laser
bandwidth. Also, increasing � leads to a reduced flux, since the pump frequency components
near the edges of the pump spectrum involve weaker phasematching and therefore a more
limited contribution to the source brightness.

When describing the effect of fiber coupling on SPDC photon pairs, the degree of focusing
of the fiber-collection modes plays a crucial role [36]. Indeed, we find that for a given pump
beam radius w0, the fiber-collection mode radius on the output face of the crystal wf is of
fundamental importance. Specifically, we find that there is a particular value of wf that optimizes
the resulting brightness for a given source configuration while not deteriorating the photon-pair
separability. Such an optimum wf characterizes the fiber-collection modes that lead to the best
overlap with the SPDC light spatial distribution. This is clear from figures 4(a) and (b), which
show the expected heralded single-photon purity and the source brightness as a function of wf,
for each of the four sources considered.

Table 1 summarizes the values of the experimental parameters that define the four sources
considered: engineered, unengineered, UF and UFF.

In what follows we compare these four sources (engineered, typical, UF and UFF) in
terms of the source brightness and the degree of factorability. In order to characterize each
of the sources considered, we employ the heralded single-photon purity Tr(⇢̂s

2
) and the source

brightness N (see section 2.4).
Figures 4(c)–(e) show the fiber-coupled joint spectra for three of the sources considered

here (engineered, unengineered and UFF), where for each case we have selected the optimum
fiber-collection mode radius. The engineered source leads to an optimum brightness of 0.20
fiber-coupled photon pairs per pump pulse, which occurs for wf = 21.6 µm, resulting in a purity
of Tr(⇢̂2

2) = 0.96, observed for a pump bandwidth of 1�pump = 2.0 ⇥ 1� = 29.1 nm. Because
the resulting two-photon state is nearly factorable, weak spectral filtering would suffice to
attain a nearly optimum single-photon purity. Note that although each of conditions 1–4 is
fulfilled, condition 5 is not. Indeed, the fiber azimuthal angular acceptance (calculated at 1/e)
of 8max = 3.4� (shown by the outer white-dashed-line box in figure 3(d)) is such that azimuthal
correlations are not altogether suppressed.

In contrast, the unengineered source leads to a comparatively low single-photon purity,
which, in the vicinity of the maximum expected brightness, reaches values of ⇠ 0.2.

New Journal of Physics 12 (2010) 093027 (http://www.njp.org/)

http://www.njp.org/


16

0.045

0.030

0.015

Figure 4. (a) Purity for the single heralded photon in the signal mode Tr(⇢2
s ),

versus fiber collection mode radius wf, for four sources of interest: (i) engineered
source (E), (ii) unengineered source (U), (iii) unengineered, filtered (UF) source
and (iv) unengineered, pump-focused, filtered (UFF) source. (b) Brightness
(number of fiber-coupled photon pairs per pump pulse) as a function of wf for
the above four sources. (c–e) Coupled joint spectra f (!s, !i), plotted for each
of three of the sources (engineered, unengineered and UFF), in each case for the
optimum value of wf. In this figure, for each configuration the pump bandwidth
� has been taken as 2.0 times the corresponding threshold value � related to
condition 5 for factorability.

Figures 4(c) and (d) show the expected behavior: while the engineered source leads to a nearly
factorable joint spectrum, the unengineered source exhibits strong spectral correlations. Of
course, a possible strategy to impose factorability on the unengineered source is to spectrally
filter the signal and idler photons with a sufficiently small bandwidth. However, this is achieved
at the cost of a significant reduction of the two-photon flux. In figure 4(a) and (b), we show
the single-photon purity and source brightness for the UF source, which corresponds to an
unengineered source rendered factorable through Gaussian-profile spectral filters acting on the
signal and idler modes. For the specific case considered here, a filter with a full transmission
width at half-maximum of 15.3 nm (selected to reach the same single-photon purity as the
engineered source) leads to a flux ⇠ 496 times greater in the case of the engineered source,
compared to the unengineered source, as shown in figure 4(b).

Table 2 shows some of the factors appearing in equation (27) computed for each of the
sources, divided by the corresponding values for each of the engineered source. Thus, a value
smaller than unity implies that the engineered source outperforms the source in question, while a
value greater than unity implies that the engineered source underperforms the source in question.
Here, Cs and Ci (see equations (29) and (30)) are selected to include all transverse wavevectors
with |ũ(Eks)ũ(Eki)|2 values greater than or equal to 1/100 of the maximum value. As may be
seen from the table, when compared to the unengineered source, the engineered source leads to
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Table 2. This table shows some of the factors that appear in equation (27), for
each of the sources listed in the table, normalized by the corresponding value for
the engineered source.

1/� d2 w2
0 S |O|2 1!2

Engineered 1.0 1.0 1.0 1.0 1.0 1.0
Unengineered 1.56 1.39 1866.4 0.0037 0.0011 17.99
UF 3.03 1.39 1866.4 0.0037 0.0011 0.11
UFF 2.78 1.39 1.0 8.64 0.47 0.14

(i) a drastically higher degree of overlap |O|2, (ii) a larger transverse wavevector source extent
S , (iii) a lower value of d2 (note that for a given choice of crystal, we have no control over
d, which is angle dependent, with values d = 1.64 and 1.94 pm V�1 for the engineered and
unengineered sources, respectively) and (iv) a smaller emitted bandwidth 1! ⌘ 1!s = 1!i.
Once we spectrally filter the unengineered source to make its degree of factorability (as
quantified by the single-photon purity) equal to that of the engineered source (this corresponds
to the UF source), the emitted bandwidth becomes much greater for the engineered source.
The combined effect of the above explains the drastic brightness enhancement observed for the
engineered source versus the UF source.

We now consider the UFF source, identical to the typical, spectrally filtered source except
that: (i) the pump beam is focused to the same degree as for the engineered source and
(ii) the fiber-collection mode radius is chosen to yield the maximum brightness for the selected
degree of pump focusing. For this source, the pump bandwidth is 1�pump = 10.5 nm, and the
signal and idler modes are each transmitted through a filter with bandwidth 17.5 nm. The pump
beam radius is 23.6 µm, while the optimum brightness occurs for a fiber-collection mode radius
of 11.4 µm. While the advantage of the engineered source in terms of the emitted bandwidth
basically remains, the advantage in terms of the degree of overlap is drastically reduced and
the advantage in terms of the transverse wavevector extent is actually reversed. The engineered
source requires larger propagation angles, with the effect of sharpening correlations involving
transverse wavevectors (internal polar angle–frequency correlations and external azimuthal-
angle correlations). This limits the enhancement in the degree of overlap over the typical, pump-
focused, spectrally filtered source; the effect of the suppression of spatio-temporal entanglement
observed for the engineered source is unfortunately offset by the effect of these sharpened
transverse wavevector correlations. The net effect is that the engineered source has a brightness
equal to ⇠ 0.47 of that of the UFF source.

Some recent works have demonstrated remarkably bright photon pair sources [37, 38].
For example, in [38], a considerably larger count rate per unit pump power and unit emission
bandwidth is reported, compared to the UFF and engineered sources considered here. While
Hentschel et al [38] report a brightness (here defined as pairs per second, normalized by pump
power) close to 2 ⇥ 105 pairs s�1 mW�1, our engineered source leads to a brightness close to
3 ⇥ 103 pairs s�1 mW�1. In this experiment, however, no effort was made to render the photon
pairs factorable. The situation is different when compared to sources designed to be factorable.
Indeed, the rates of emission for the UFF and engineered sources studied in this paper are
higher, compared to observed detection rates in a recent factorable photon pair generation
experiment [16], which reports a brightness of 1.5 ⇥ 102 pairs s�1 mW�1.
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Figure 5. (a) Schematic of the fiber-collection mode (for one of the two photons),
refracted into the crystal, together with the pump beam. (b) Emitted flux versus
crystal length, showing saturation near L = Lmax (indicated by the thin vertical
line).

In general terms, the attainable heralding efficiency is reduced by filtering—spatial or
spectral—of the signal and idler modes. The UF and UFF sources involve spectral filtering,
required in order to ensure factorability, and also involve spatial filtering associated with fiber
coupling of the signal and idler modes. Although the engineered source does not involve
spectral filtering, the transverse wavevector correlations (in particular, azimuthal–angle external
correlations) resulting from the large propagation angles required for vector group velocity
matching imply that the optimum fiber-collection modes lead to considerable spatial filtering.
The heralding efficiency, computed numerically as N/Ns (see equations (25) and (26)), is 0.33
for the engineered source and 0.53 for the UFF source.

An important design consideration is the crystal length to be used. Generally, for SPDC,
the flux dependence on crystal length tends to be linear. This is different in the present case
where the signal and idler photon pairs, generated non-collinearly, are coupled into optical fiber.
Figure 5(a) shows schematically the fiber-collection modes refracted from free space into the
crystal and the pump beam (where we ignore the effects of diffraction). Only those photon
pairs emitted into these intra-crystal fiber-collection modes can be coupled into the fibers. We
can crudely estimate the length of crystal that can contribute to fiber-coupled photon pairs as
the length of the overlap region between the pump beam and the intra-crystal fiber-collection
modes. This leads to the following formula for the maximum effective crystal length, in terms
of the internal orientation angle of the fiber modes ✓ :

Lmax =
q

2(w2
f + w2

0 cos2 ✓)

sin ✓
. (32)

This tells us that, within this simple model, increasing the crystal length beyond Lmax does not
result in any enhancement of the flux. Figure 5(b) shows the expected brightness (computed
from equation (25)) versus crystal length for a source emitting at ✓ = 9.96� with a pump beam
radius of w0 = 40 µm and a fiber-collection mode radius of wf = 40 µm. The vertical line
indicates the value of Lmax, making it clear that around this value of the crystal length, the
brightness reaches a plateau.

In the case of the engineered source, for a given crystal length the pump beam radius
w0 must have a specific value, determined by equation (14). From the plots in figure 6, we
can then determine the value of the fiber-collection radius at the beamwaist wf required for
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Figure 6. (a) Engineered source brightness versus wf/w0 for four different
crystal lengths. Note that all four curves exhibit a maximum roughly at wf =
0.93 ⇥ w0 (indicated by the vertical line). (b) Plot of the maximum brightness
versus crystal length, calculated for L = 0.3, 0.6, 0.9 and 1.2 mm. The dashed
line indicates a 1/L fit.

optimum fiber coupling. Figure 6(a) shows the expected brightness plotted versus the quotient
wf/w0, for different crystal lengths. Note that the maximum occurs for an essentially fixed
value of the quotient wf/w0 ⇡ 0.93 (the vertical line identifies this specific value of wf/w0),
for all crystal lengths considered. Figure 6(b) shows the maximum brightness attainable as a
function of crystal length, showing a 1/L dependence, valid within the range of values for the
crystal length considered; the dotted line represents the best fit to a 1/L dependence. Of course,
for short enough crystals, this trend will be reversed.

Interestingly, while the total flux varies linearly with crystal length, saturating to a plateau
in the case of fiber coupling, the maximum factorable flux actually is greater for thinner crystals
according to an N / 1/L dependence. In order to understand this behavior, let us note that for
the optimized geometry, as L is increased, w0 must increase linearly with L (so as to fulfill
equation (14)), and in turn wf must increase linearly with w0, so as to fulfill the condition
wf/w0 ' 0.93, derived from figure 6. Therefore, because the angular extent of the two-photon
state is inversely proportional to L and w0, in order to ensure proper spatial modematching
between the SPDC light and the fiber collection modes, the range of directions of propagation
allowed to reach the detectors must be restricted in order to maintain factorability. Indeed, as
we have pointed out, it is not possible to suppress �s–�i correlations, although they can be
disregarded for a small enough spread of detected wavevectors. This is consistent with our
condition 5 for factorability, which may be re-expressed in terms of the fiber collection mode
radius wf, using the relationship sin8max = 1/(kwf). What this means, in practice, is that for
longer crystals, the width of the azimuthal sector of the SPDC cone that one can detect for each
of the two photons while maintaining factorability must decrease as L is increased, explaining
the 1/L dependence of the maximum factorable flux. Note that a similar analysis carried out for
the UFF source (not shown) indicates the same 1/L factorable flux behavior.

Even though in principle the factorable flux may be increased substantially by using
progressively shorter crystals, in practice a shorter crystal leads to a larger phasematching
bandwidth and, hence, to an increased pump bandwidth required to preserve factorability. This
is consistent with our condition 4 for factorability, where the required bandwidth scales as 1/L .
Thus, in practice, the available pump bandwidth will limit how short the SPDC crystal can be
made, and consequently will limit the attainable flux.
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4. Conclusions

We have presented an analysis of the joint amplitude that characterizes photon pairs produced by
non-collinear type-I SPDC. We have paid particular attention to the spatio-temporal correlations
between the signal and idler photons, including both: (i) correlations between variables
corresponding to different photons, which lead to quantum entanglement, and (ii) correlations
between two variables corresponding to the same SPDC mode. This analysis is facilitated by
writing an approximate version of the joint amplitude, expressed entirely in terms of Gaussian
functions. Such a treatment leads to a specific set of conditions that permits the suppression of
all spatio-temporal correlations between the signal and idler photons. We show that in order to
guarantee factorability in cases where a spread of wavevectors is allowed to reach the detectors,
it is essential to suppress correlations in all photonic degrees of freedom.

Exploiting our design criteria for the specific case of a BBO crystal, we verify through
a numerical simulation, which does not resort to approximations, that the fulfillment of our
conditions for factorability does in fact lead to a large brightness (defined as the number
of fiber-coupled photon pairs per pump pulse), along with a high single heralded photon
purity, indicating that the photon pairs are nearly factorable. This brightness enhancement
is the result of engineering the two-photon state at the source, thus eliminating the need
for filtering. We have also considered a different avenue towards bright, factorable photon
pair sources: an unengineered source for which the pump beam is focused to the same
degree as for the engineered source, for which the radius of the fiber-collection modes is
selected so that the source brightness is optimized and for which factorability is ensured by
spectral filtering. We find that the suppression of spatio-temporal entanglement observed for
the engineered source is offset by the appearance of transverse wavevector correlations that
cannot be made to vanish, with the effect that this last source has a brightness of the same
order of magnitude as the engineered source. We have compared the expected brightness for the
engineered and this unengineered, focused-pump, filtered source, with the expected brightness
for an unengineered source, leading to a very considerable (two to three orders of magnitude)
advantage over the unengineered source. Note that an engineered photon-pair source for which
vector group velocity matching occurs for relatively small propagation angles would permit the
full exploitation of the photon-pair engineering methods that we have developed. As a specific
example, a frequency-degenerate photon-pair source based on a BBO crystal, configured for
emission in the telecommunications band, leads to group velocity matching at comparatively
small propagation angles. Note that for other types of crystals, shifting the emission wavelength
towards the infrared likewise results in smaller vector group velocity matching angles. We
expect that the analysis presented in this paper will be useful for the design of photon-pair
sources tailored for quantum information processing applications.
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Appendix A

In order to describe the spatio-temporal correlations present in SPDC, it is convenient to write
an approximate joint amplitude function entirely in terms of Gaussian functions. This can be
achieved by approximating the sinc function in equation (7) as a Gaussian function with the
same full-width at half-maximum, i.e. sinc(x) ⇡ exp(�� x2) with � = 0.193. The argument of
the resulting Gaussian function can then be expressed as a first-order Taylor series in each of the
six variables {!s, ✓s, �s, !i, ✓i, �i}, around corresponding central values. We define capital-letter
variables corresponding to each of these six variables as the difference between each variable
and its central value. The resulting expressions for a general orientation of the detection plane
(i.e. for a general value of �0) tend to be complicated. Here we concentrate on the specific case
�0 = 0. We likewise assume that the pump beamwaist is located at the center of the crystal
(i.e. z0 = 0). In this case, the joint amplitude can be written in matrix form [39] as follows:

F(�s, 2s, 8s; �i, 2i, 8i) = exp

2

6666664
� 1

2X

0

BBBBBB@

t2
ss ⌧̃ss T̃ss t2

si ⌧̃si T̃si

⌧̃ss ↵ss �ss ⌧̃is ↵si �si

T̃ss �ss ⌘ss T̃si �si ⌘si

t2
si ⌧̃is T̃si t2

ii ⌧̃ii T̃ii

⌧̃si ↵si �si ⌧̃ii ↵ii �ii

T̃si �si ⌘si T̃ii �ii ⌘ii

1

CCCCCCA
X

T

3

7777775
, (A.1)

where X represents the row vector (�s2s8s�i2i8i) and X

T represents the corresponding
column vector. Here, we used the following definitions (with l, m, µ = s, i):

t2
lm = 2��2 + 1

2� Tl Tm + 1
2⌧l⌧m, (A.2)

↵lm = 1
2� L2k?lk?m + 1

2w
2
0kzlkzm, (A.3)

⌘lm = 1
2k?lk?m(�⇢2L2 + w2

0), (A.4)

⌧̃lm = 1
2� LTlk?m + 1

2w0⌧lkzm, (A.5)

T̃lm = 1
2� L⇢k?l Tm, (A.6)

�lm = 1
2� L2⇢k?lk?m, (A.7)

and

Tµ = L(k 0
p(!p0) � k 0

µ(!µ0 cos ✓µ0)), (A.8)

⌧µ = w0k 0
µ(!µ0) sin ✓µ0, (A.9)

kzµ = kµ(!µ0) cos ✓µ0, (A.10)

k?µ = kµ(!µ0) sin ✓µ0. (A.11)

It can be inferred that for vanishing walk-off (⇢ = 0), the resulting state is independent of
the orientation of the detection plane [29] (characterized by angle �0). Because the effect of
walk-off scales with crystal length, for relatively short crystals (such as those assumed in this
paper), walk-off plays a limited role. In the case of experiments relying on longer crystals, it may
be beneficial to use a specific detection plane. For example, from our analysis we have found
that �0 = 90� leads to exactly vanishing correlations involving the azimuthal angle variables and
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αsi

Figure A.1. Signal–idler photon pair correlations diagram for the spatial and
spectral degrees of freedom, corresponding to vanishing pump walk-off. Dark
lines represent the external (signal–idler) correlations, whereas light lines stand
for internal (signal–signal or idler–idler) correlations.

walk-off-dependent polar angle/spectral correlation [29, 30]. This is in contrast with the �0 = 0�

case, for which correlations involving azimuthal angles do not vanish and polar angle/spectral
correlations are walk-off independent. Figure A.1 represents schematically the correlations
arising between the spatial and spectral degrees of freedom for the signal/idler photon pair, and
the parameters that characterize these correlations, assuming vanishing walk-off of the pump
field.

Elements along the diagonal of the matrix in equation (A.1) refer to widths (spectral or
angular) for each of the photonic variables. Off-diagonal elements correspond to correlations
between two variables. If we divide the matrix into four contiguous 3 by 3 blocks, then the
two diagonal blocks refer to internal correlations, while the two off-diagonal blocks refer to
external correlations. Since the matrix is symmetric, out of the 36 elements, at most 21 can
be independent. For frequency-degenerate SPDC, only eight elements are independent as a
consequence of the following relationships:

Ts = Ti = T,
⌧s = �⌧i = �⌧,
kzs = kzi = kz,
k?s = �k?i = �k?.

(A.12)

In this case, (A.1) is reduced to

F(�s, 2s, 8s; �i, 2i, 8i) = exp

2

6666664
� 1
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0

BBBBBB@
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1
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X
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where

t2
± = 2��2 + 1

2� T 2 ± 1
2⌧

2, (A.14)

↵± = ± 1
2� L2k2

? + 1
2w

2
0k2

z , (A.15)

⌘ = 1
2k2

?(�⇢2L2 + w2
0), (A.16)
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⌧̃ = 1
2� LT k? + 1

2w0⌧kz, (A.17)

T̃ = 1
2� L⇢k?T, (A.18)

� = 1
2� L2⇢k2

?. (A.19)

The conditions for factorability presented in this work were derived by imposing the condition
that external correlation coefficients either vanish or are negligible simultaneously.
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