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We present a study of the spectral properties of photon pairs generated through the process of spontaneous
four-wave mixing (SFWM) in single mode fiber. Our analysis assumes narrowband pumps, which are allowed
to be frequency degenerate or nondegenerate. Based on this analysis, we derive conditions on the pump
frequencies and on the fiber dispersion parameters which guarantee the generation of ultrabroadband photon
pairs. Such photon pairs are characterized by (i) a very large degree of entanglement, and (ii) a very high
degree of temporal synchronization between the signal and idler photons. Through a numerical exercise, we
find that the use of photonic crystal fiber (PCF) facilitates the fulfilment of the conditions for ultrabroadband
photon pair generation; in particular, the spectral region in which emission occurs can be adjusted to particular
needs through an appropriate choice of the PCF parameters. In addition, we present a quantum interference
effect, resulting from indistinguishable pathways to the same outcome, which can occur when pumping a

SFWM source with multiple spectral lines.
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I. INTRODUCTION

Quantum-enhanced technologies require photon pairs
with specific properties. Thus, for example, factorizability is
required for the generation of pure heralded single photons, a
crucial resource for linear optical quantum computation [1].
At the opposite extreme, spontaneous parametric processes
permit the generation of photon pairs with a remarkably
large degree of entanglement. Such photon pairs are charac-
terized by a large Schmidt number [2], which implies that
emission takes place into a large number of independent fre-
quency or transverse momentum signal and idler mode pairs.
A state with these characteristics leads to a large mutual in-
formation, which quantifies the information which two par-
ties can in principle share by virtue of the entanglement
present [3]. Two-photon states with a large degree of en-
tanglement may lead to exciting applications, such as large-
alphabet quantum key distribution [4], quantum-enhanced
two-photon absorption [5], and teleportation of single-photon
wave packets [6].

Most research on photon pair generation has relied on the
process of spontaneous parametric downconversion (PDC) in
second-order nonlinear crystals [7]. Recently, the process of
spontaneous four-wave mixing (SFWM) in optical fiber, re-
lying on a third-order nonlinearity, has emerged as a useful
alternative, with some clear advantages. Indeed, fibers permit
an essentially unlimited interaction length; in addition, the
generated flux is proportional to the square of the pump
power, instead of the linear pump-power dependence ob-
served for PDC. This leads to the possibility of remarkably
bright sources. While some of the first SFWM experiments
were carried out with standard fiber [8], recent experiments
have exploited the greater flexibility conferred by photonic
crystal fibers (PCF) [9]. Thus, for example, the zero group
velocity dispersion frequencies may be selected by careful
choice of the fiber design parameters, leading to the ability to
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also select the generation frequencies. In previous work, we
have shown [10] that SFWM in PCF’s leads to the ability to
engineer the spectral entanglement properties of photon
pairs.

We are particulary interested in spontaneous parametric
processes constrained to a single transverse mode, e.g., in a
single-mode waveguide or fiber. Under these circumstances
transverse momentum entanglement as well as mixed
spectral-transverse momentum entanglement are automati-
cally suppressed. Thus, for single-transverse-mode paramet-
ric processes we may limit our analysis of the entanglement
present to the spectral degree of freedom. It has been shown
that a large Schmidt number can then be obtained by engi-
neering the photon pair generation process to yield the larg-
est possible emission bandwidth compatible with the small-
est possible pump bandwidth [3]. Apart from its role in
enhancing the attainable degree of entanglement, a large gen-
eration bandwidth also leads to a small correlation time, de-
fined as the width of the time of emission difference (be-
tween signal and idler) probability distribution [11,12]. A
source with these characteristics would be useful for appli-
cations relying on a short time of arrival difference between
two optical modes, such as quantum optical coherence to-
mography [13] where the instrument resolution is inversely
proportional to the correlation time. Let us note that an ul-
trabroadband photon pair source treated classically, i.e.,
where we employ standard non-photon-counting detectors,
could serve as a substitute for white light sources (e.g., based
on self-phase modulation in fibers) with one clear advantage:
while white light spectra often have a rather irregular shape,
ultrabroadband parametric processes can be engineered to
have a nearly flat spectrum. Likewise, a source with these
characteristics could lead to parametric amplifiers with an
exceptionally large bandwidth.

The generation of ultrabroadband two-photon states is
possible with sources based on parametric downconversion
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(PDC) relying on second-order nonlinear crystals [ 14—17]. In
a recent experiment, we have shown that selecting the non-
linear crystal and pump frequency so that the emitted light is
centered at the zero group velocity dispersion frequency of
the nonlinear medium leads to PDC light with a remarkably
broad spectrum; a full width at half maximum generation
bandwidth of 1.080 um centered at 1.885 um was demon-
strated [18]. Nevertheless, an important limitation of an ap-
proach based on PDC, is that because broadband emission
occurs at the zero dispersion frequency, the central emission
frequency cannot be freely selected. Note that while periodic
poling in nonlinear crystals [19] can be exploited to yield
phase-matching at arbitrary wavelengths, it cannot be used to
manipulate the zero dispersion frequency, and hence to select
the ultrabroadband central frequency; thus, the experiment
discussed above operates in a spectral region which is incon-
venient for many applications. This leads to the motivation
for the present work, in which we aim to develop fiber-based
ultrabroadband photon pair sources, with far greater freedom
for selecting the central generation frequency and other emis-
sion characteristics.

In this paper we analyze the spectral properties of photon
pairs generated through the process of spontaneous four-
wave mixing in optical fiber. We concentrate on the case of
quasimonochromatic pumps which may be either frequency
degenerate or nondegenerate, and where all the fields propa-
gate in the fundamental fiber mode. While our theory can be
applied to any fiber, we illustrate our discussion with a nu-
merical exercise for the specific case of photonic crystal fi-
ber, composed of a solid core and a cladding with an array of
air holes. The main motivation for using PCF is that the
resulting dispersion properties can be tailored by careful
choice of the fiber design parameters including the size, lo-
cation, and shape of the air holes, which in turn permits the
generation of photon pairs with tailored properties. We ana-
lyze the conditions which must be imposed on the pump
frequencies and the fiber parameters to permit ultrabroad-
band photon pair generation. Note that while broadband
four-wave mixing in optical fiber has been analyzed from a
classical perspective by several groups [20], such an analysis
has not been presented for the spontaneous, nonclassical
case. We also discuss a quantum interference effect which
can occur in the process of SFWM when the pump includes
multiple spectral lines, for example, corresponding to degen-
erate and nondegenerate pumps.

II. SPONTANEOUS FOUR-WAVE MIXING THEORY

We study the spontaneous four-wave mixing process in
single-mode fiber with a third-order nonlinearity ). In this
process, a photon pair, comprised of one photon in the signal

mode, lA?S, and one photon in the idler mode Ei, is created by
joint annihilation of two photons from the pump fields E;
and E,. In this paper we focus on source geometries which
permit the generation of particularly broadband signal and
idler photon-pair states. Remarkably, this is possible even if
the pumps are nearly monochromatic. Our theory in this pa-
per is valid in the limit of monochromatic pumps, and for all
generation frequencies. In contrast, the theory presented in a
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related paper from our group [10] for broadband pumps, is
valid only for a narrow signal and idler spectral vicinity and
is therefore unsuitable for the description of broadband
photon-pair generation. In our present analysis we assume
that all fields are copolarized and that they propagate in the
fundamental transverse mode of the fiber.

The quantum state of the generated photon pair in an op-
tical fiber of length L can be obtained following a standard
perturbative approach [21] and is given by

|\P> = |0>s|0>z + Kf f dwsdwiF(wywi)|ws>s|wi>i? (1)

where « is a constant which represents the generation effi-
ciency and F(w,,w;) is the joint spectral amplitude function
(JSA), which describes the spectral entanglement properties
of the photon pair

Flw,,»;) = j do'a)(0)ay(w,+ 0, — ")

X sinc[ LAk(@’, w,, 0;)/2]expliLAk(w', wg, w;)/2].
(2)

The JSA function is given in terms of the phase-mismatch
function

Ak(wy, w,, w;) = k(o)) + k(o + 0; — 0)) — k(w,) — k(w;)
- (nP+ 72P)), (3)

which includes self/cross-phase modulation contributions for
the two pumps with peak powers P, and P,, characterized by
the nonlinear parameters vy, and y,; a;(w) (with i=1,2) rep-
resents the spectral shape of the pumps. The energy conser-
vation constraint is apparent in the argument of the second
term of the phase mismatch [10].

A. Spontaneous four-wave mixing with narrowband pumps

An expression for the JSA [Eq. (2)] in closed analytic
form, valid for all generation frequencies, can be derived if
both pumps are nearly monochromatic. Here we assume that
the pumps have a Gaussian spectral profile, centered at fre-
quencies w; and w,, each with a narrow bandwidth o. It can
be shown that in the limit where both pumps are monochro-
matic, i.e., 0—0, the product of the two pump envelope
functions in Eq. (2) reduces to

() ay(w,+ 0, — ') — TN w, + w;— 0, — w,)
X Jo'" - (0,+ 0;+ 0 — ©,)/2].
4)

The appearance of a Dirac 6 function involving w’ in Eq.
(4) allows us to carry out the integral in Eq. (2). Thus, in the
limit of monochromatic pumps, the JSA is given by

ch(wxswi) = N(S(ws +w;—w— (1)2)
X sinc[ LAk, (w;, ;)/2]exp[iLAk,,(w,, w;)/2],
&)

in terms of a normalization constant N and the phase mis-
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match Ak, (w,,w;) which is now a function only of w, and

w;

Akc'w(ws’ wi) = k[(ws +w;+ o — w2)/2]
+ k(0 + w;— w; + 0,)/2]
—k(wy) = k(w;) = (7P1 + v2Py).  (6)

Making use of Egs. (1), (5), and (6), we can write down
the two photon state as

) = [0),J0) + & j dof(@|o) o+ -y ()

where
f(w) = N sinc[LAk,,, ;ino(w)/2]exp[iLAk,., sino(®)/2], (8)
in terms of

Akcw,sing(w) = Akcw(ws W)+ Wy — w)
=k(w)) + k(w,) = k(@) = k(w; + w; — w)
~ NP+ 7P). )

Note that while |F,,(w,,®;)|*> represents the joint spec-
trum, |f(w)|? represents the singles spectrum. From Eq. (5), it
is clear that photon-pair generation requires the fulfilment of
the following two conditions: (i) energy conservation, or
w,+w;=w;+w, and (i) momentum conservation or Ak,,
~ (), with a tolerance which is inversely proportional to L. In
order to analyze the phase-matching properties near the zero
group velocity dispersion frequency w,; of the fiber, we ex-
press the propagation constant as a Taylor series centered at
w;=w;=w,. Thus, the phase mismatch may be expressed to
fourth order as

1 1
AKD(S.,8) == (y, Py + y,P,) + Sky + — Ok, 8, + ——
cw( i ) (71 177 2) 0 2 10+ 421

180 -6k 6,8

Sy 67

8(3')

5

26968 -],  (10)

16(4')

where 6kn=k5r")+k(_")—2k("), where k" represents the nth fre-
quency derivative of k evaluated at Q. =w.;* (0;—w,)/2,
and where k" represents the nth frequency derivative of k
evaluated at w,,. Here, we have defined detunings with re-
spect to w,,, and furthermore have defined new variables
given by the sum and difference of these detunings,
m=s,i,1,2,

5# =0, - 0y,

0.=08,% 6. (11)

Let us note that the constant term of the expansion, &k,
vanishes if perfect phase-matching is achieved for pump fre-
quencies w; and w, at the generated frequencies w,=w_; and
w;=w,,. The JSA can then be written as
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8,,)sinc[LAK(8,, 8.)/2]
@(s,,8)/2], (12)

cw

Fe,(8,,0.) = N6, -
X expliLAk

where we have defined §,,= 6+ 6.

B. Step index dispersion model for photonic crystal fiber

Our analysis so far, and the conditions for ultrabroadband
photon pair generation to be presented in Sec. III, are valid
for any fiber. In order to carry out specific numerical calcu-
lations, in this paper we use specialize our discussion to pho-
tonic crystal fiber. This type of fiber consists of a fused silica
core surrounded by silica cladding with a pattern of air holes
which remains constant along the fiber length. This mixture
of air and glass in the cladding results in an average refrac-
tive index that is considerably lower than that of the core,
providing a high dielectric contrast, resulting in strong opti-
cal confinement. This leads to high peak irradiances even for
modest input powers, which enhances nonlinear optical ef-
fects such as SFWM. In addition, the dispersion characteris-
tics of the PCFs can be engineered by variations of the dis-
tribution, size and shape of the air holes surrounding the
core. In particular, it becomes possible to choose the zero
dispersion frequencies, to tailor the SFWM phase-matching
properties [22] and to design fibers approaching endlessly
single-mode behavior [23].

The SFWM phase-matching properties are determined by
the fundamental mode propagation constant, given in terms
of the effective refractive index n,, by k(w)=n,{w)w/c. We
adopt a step-index model, where the core has radius r, its
index is that of fused silica n,(w), and the cladding index is
calculated as n g (w)=f+(1-f)n(w), where f is the air-
filling fraction. According to Ref. [24] this fiber dispersion
model is accurate for 0.1<f<0.9. In the context of our
work, this model permits a straightforward exploration of the
spectral entanglement properties in {r,f} parameter space.

C. Phase-matching properties for degenerate pumps

Let us now restrict our treatment to the degenerate pumps
regime, i.e., w;=w,=w,. In this case, Q,=0_=w, and
therefore, it can be inferred that, except for the self/cross-
phase modulation term, the series in Eq. (10) does not start
until third-order terms and all terms ok, vanish. Thus, with

P;=P,=P and y,;=7y,=7, Eq. (10) reduces to
AKY(S,,8)=—-2yP -5
3k<3> K@
(3') "8

—(65+8)|. (13)

For a negligible self/cross-phase modulation contribution,
an analysis of Eq. (13) reveals the existence of two distinct
phasematching “branches,” where each one corresponds to
one of the factors in square brackets vanishing. We refer to
the first as the trivial branch; indeed together with energy
conservation it may be seen to be centered at w,=w;=w,.

Here we concentrate on the second, nontrivial solution. To
this end, it is instructive to consider a representation of the

joint spectrum [see Eq. (5)] in {6, &} (or {w,, w;}) space. In
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FIG. 1. (Color online) Representation of the joint and singles spectrum for a photonic crystal fiber with r=0.7000 wm and f=0.9, leading
to N y=2mc/ w,4=0.6335 um, in the low pump peak power limit and with a fiber length of L=1 cm. Note that frequency axes are labeled
for convenience with wavelength values. (a) Phase-matching function [sinc[ LAk, (w,,®;)]/2|? plotted as a function of w, and w;; lines with
negative unit slope represent energy conservation loci for different values of w, around w,,;. Thin blue lines represent the perfect phase-

p

matching contour. The joint spectrum is obtained as the intersection of the energy conservation locus with the phase-matched region in
{wy, w;} space. (b) Singles spectrum for a pump frequency which satisfies ,> 4. (c) Similar to (a), in the nondegenerate pumps regime.
(d) Singles spectrum for nondegenerate pumps such that (w;+w;) >2w_4.

Fig. 1, we present such a plot for a particular fiber (see figure
caption), where we have not, in contrast with the preceding
analysis, resorted to a truncated Taylor series description.
Here, the energy conservation & function is represented by a
straight line with negative unit slope, the trivial branch cor-
responds to a line with unit slope, and the nontrivial branch
is represented by a curve which near 6,=9;=0 is elliptical.
The spectral width of each of the two phase-matching
branches is inversely proportional to the fiber length (for
graphical clarity in our plots we have assumed a short fiber).
We have also overlapped a plot of the contour defined by
Ak=0, shown by the thin blue line, which corresponds to
frequency pairs which yield perfect phase-matching. Photon
pairs are generated in areas of {5, §;} space where any of the
two phase-matching branches meet the energy conservation
locus.

Figure 1(a) shows an example of the joint spectral inten-
sity |F(w,, w;)|* for degenerate pumps, obeying w,> . (for
which the energy conservation ¢ function is represented by
the thick black, solid line), leading to a singles spectrum
|f(w)|> given by Eq. (8) with three peaks as shown in Fig.
1(b); while the outer peaks correspond to the nontrivial
branch, the central peak corresponds to the trivial branch
which is centered at the pump frequency. Note that if the
degenerate pump frequency is made equal to w,, the two
nontrivial peaks merge into a single peak, which then over-
laps with the trivial peak. The long-segment dashed line with
negative unit slope, represents the resulting energy conserva-
tion locus, tangent to the phase-matching curve at w,=w;
=w,,. If the degenerate pump frequency is tuned down fur-

ther to values such that w, <, (short-segment dashed line)
then the nontrivial branch becomes inaccessible, leaving
only the trivial contribution. Note that if the concavity of the
phase-matching ellipse is reversed (see below), then spec-
trally distinct trivial and nontrivial contributions are ob-
served for w,<w,, instead.

An analysis of Eq. (13) reveals that the nontrivial phase-
matching branch, to fourth order in the phase mismatch, has
an elliptical locus in {w,,w;} space. Note that our Taylor
series description is valid only in the vicinity of the zero
group velocity dispersion frequency; for large enough detun-
ings from this frequency, the phase-matching locus will de-
viate from the elliptical shape. Note also that for the degen-
erate  pump case, the nontrivial phase-matching
characteristics are independent of the pump field. In this
case, the phase-matching curve is tangent at the point given
by w=w,; and w;=w_4 (i.e., §,=5;=0) to a line with nega-
tive unit slope. The curvature at this point is proportional to
the ratio k/k®); thus, if this ratio is positive the concavity
is oriented towards negative values of &,, while if the ratio is
negative, the concavity is oriented in the opposite direction.

D. Phase-matching properties for nondegenerate pumps

Let us now restrict our attention to a SFWM process in
the nondegenerate pumps regime, i.e., w; # w,. For negli-
gible self/cross-phase modulation, an analysis of Eq. (10)
shows the existence of three distinct phase-matching
branches, two of them trivial and one nontrivial. It is
straightforward to verify by direct evaluation of Eq. (6) in
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the low pump power limit, that frequency pairs on the
straight lines 8,=d,* &,_ (where §,_=36,-3,) fulfil perfect
phase-matching. These are trivial phase-matching branches;
indeed, together with energy conservation, they can be
shown to be centered at (i) w,=w;, w;=w, and (ii) w,=w,,
w;=w;. In order to describe the nontrivial branch, we ini-
tially restrict our attention to a small spectral vicinity around
o, for which second- and higher-order terms in Eq. (10) can
be neglected. In this case, from Eq. (10) it may be shown that
frequency pairs on the line &§=-38,+2(2yP- ky)/ 5k, fulfil
perfect phase-matching. The fourth order term in Eq. (10) (as
well as higher-order terms not included in our analysis) has
the effect of adding curvature to this nontrivial phase-
matching branch.

In order to illustrate this discussion, Fig. 1(c) shows a
representation of the joint spectral intensity, for the same
fiber as in Fig. 1(a), but now in the nondegenerate pumps
regime (with N\;=27c/®;=0.5400 um and A\,=27c/w,
=0.7000 wm). Note that here we have not resorted to a trun-
cated Taylor series description. The energy conservation &
function is represented by a thick black straight line with
negative unit slope, while the trivial branches are represented
by two straight lines with unit slope. The nontrivial branch is
the curved line. As in the degenerate pump case, the spectral
width of each of the three phase-matching branches is in-
versely proportional to the fiber length. We have also over-
lapped a plot of the contour defined by Ak=0, shown by the
thin blue line. Photon pairs are generated in areas of {3, 5;}
space where any of the three phase-matching branches meet
the energy conservation locus.

The joint spectral intensity, represented by Fig. 1(c), leads
to a singles spectrum with four peaks as shown in Fig. 1(d).
While the outer peaks correspond to the nontrivial branch,
the two inner peaks correspond to the trivial branches. In the
case of nondegenerate pumps, depending on the pump con-
figuration, it is possible to observe (i) two nontrivial peaks
spectrally distinct from two trivial peaks [as in Fig. 1(d)], (ii)
a single nontrivial peak spectrally distinct from two trivial
peaks (if the energy conservation locus meets the nontrivial
branch tangentially), and (iii) two trivial peaks only (if the
energy conservation locus does not meet the nontrivial
branch).

E. Effect of self/cross-phase modulation

Let us now consider the effect of the self/cross-phase
modulation term in the degenerate pumps regime (a similar
behavior to that to be described here would be observed for
the non-degenerate pumps regime), which becomes impor-
tant for a sufficiently high pump peak power. For a given
pump peak power, this term is an additive constant to the
phase mismatch at zero power Akp_,. Thus, a contour dia-
gram in {8, 5;} space formed by the contour Ak=0 for dif-
ferent power levels, represents a contour map of the function
Akp_y. Upon increasing the pump peak power, the phase-
matching contour shifts towards areas of {;, §;} space char-
acterized by higher values of Akp_(. As an illustration, Fig.
2(a) shows, for a given fiber (see figure caption), the effect
on the phase-matching contour of increasing the pump
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FIG. 2. (a) Contours Ak, (w,,w;)=0 for the following peak
powers: P=200 W, P=400 W, P=600 W, P=800 W, and P
=1000 W (we have used large peak powers for graphical clarity).
The background shading represents the sign of the phase mismatch
in the low pump power limit (Akp_y); the dark areas correspond to
Akp_g<0. (b) Representation of the joint spectral intensity for de-
generate pumps with a fiber length of L=3 cm and a peak pump
power of P=1000 W; we have assumed values for r and f as speci-
fied in the caption of Fig. 1.

power. In the background, dark areas correspond to Akp_
=<0 and light areas correspond to Akp_y=0. It is clear that as
the pump power level is increased, the phase-matching con-
tour shifts from the dark-light interface into the light areas.
How much it shifts at a particular point on the curve depends
on how slowly Akp_, changes with frequency at that point.
In general terms, for frequencies generated far from the
pump frequency, e.g., on the nontrivial branch, this shift is
much less pronounced than for frequencies generated near
the pump frequency.

For the trivial phase-matching branch and degenerate
pumps, the self/cross-phase modulation term leads to the
suppression of perfect phase-matching in areas of {w,,w;}
space where Akp_o<0 [indicated with dark shading in Fig.
2(a)]. In contrast, in areas characterized by Akp_,=0, the
self/cross-phase modulation term splits the trivial branches
into two parallel branches. In Fig. 2(b) we show a represen-
tation of the corresponding joint spectral intensity. The plot
in shades of gray represents the phase-matching function
|sinc[ LAk,,,(w,, ;)/2]|?, which is maximized, with Ak,,,=0,
for frequency pairs on the curved black line; the straight
black line represents the energy conservation locus. Note that
while the dark-shaded area in Fig. 2(a) can be accessed with
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FIG. 3. (Color online) Phase-matching [Ak,,,(w;, w;)=0] contours for fibers with f=0.5 and (a) r=0.9023 um, (b) r=0.7059 um, and (c)
r=0.5953 um. While the thin red curves represent the phase-matching contours for a peak power of P=5 W, the overlayed thick black
curves were computed in the low pump power limit. Vertical dashed lines mark the zero dispersion frequency on the pump frequency axes.
Note that for r=0.7059 um, the contour is essentially vertical at \,=\_;=0.7292 um, yielding a wide generation bandwidth of signal and
idler photon pairs. The areas shaded in black represent nonphysical regions (where w, or w; would have to be negative to satisfy energy

conservation).

a pump in the normal dispersion (k¥ >0) regime, the light-
shaded area can be accessed with a pump in the anomalous
dispersion (k' <0) regime. The splitting of the trivial
branch in the anomalous-dispersion regime is a manifestation
of modulation instability. This phenomenon, which is
equivalent to four-wave mixing phase-matched by the self/
cross-phase modulation, involves the appearance of two
spectral sidebands, placed symmetrically around the pump
[25]. In the time domain, and in the stimulated regime, this
leads to an ultrafast modulation with period 47/ 8Q (where
&) is the spectral separation between the two sidebands).

III. CONDITIONS FOR THE GENERATION OF
ULTRABROADBAND PHOTON PAIRS

In this section, we derive conditions which guarantee the
emission of highly broadband photon pairs by spontaneous
four-wave mixing utilizing narrowband pumps, in both the
degenerate and nondegenerate pumps regimes. We will carry
out the derivation of these conditions in the low pump power
limit; in practice, these conditions are applicable for peak
pump powers up to a few watts. From Eq. (5) it is clear that
SFWM photon pair emission occurs at signal and idler fre-
quency pairs {w,, ®;} which satisfy energy conservation, i.e.,
W+ w;=w;+w,, and which in addition satisfy phasematch-
ing, i.e., Ak, (w,, w;)=0. In order to obtain a large generation
bandwidth, we must therefore engineer the phase-matched
region in the joint frequency space {w,, ®;} to maximize its
overlap with the energy conservation locus, which is itself a
straight line parallel to the J_ axis. This translates into a
condition on the orientation, curvature, and location, of the
phase-matching contour Ak, (w;,®;)=0.

Concretely, we expect broadband photon pair generation
centered at signal and idler frequencies {w,,, w;,} if four con-
ditions are satisfied by these frequencies: (i) they satisfy per-
fect phasematching, i.e., Ak,,(w,,,®;,)=0, (ii) they obey en-
ergy conservation, i.e., the energy conservation locus
contains this frequency pair, (iii) the phase-matching con-
tour, which contains this frequency pair [as guaranteed by

(i)], is oriented parallel to the &_ axis, and (iv) the curvature
of the phase-matching contour vanishes at this frequency
pair. Let us note that all degenerate frequency pairs w,
=w;,, (i.e., which are contained by the line 5_=0) fulfill the
orientation requirement (iii); indeed, from Eq. (10) it may
be shown that the phase-matching contour fulfils

(dd,/d5.)|5 29=0. We will therefore restrict attention to
SFWM geometries centered at a degenerate frequency pair.
Constrained by o6_=0, the attainment of phase-matching
[condition (i) above] is guaranteed if, in addition, 8,=0 as
can be verified from Eq. (10) (note that &k, vanishes for &,
=5_=0). Energy conservation [condition (ii) above] can then
be satisfied for 8,=0_=0 if §,,=0 [see Eq. (12)], which in
turn leads to two possible scenarios involving perfect phase-
matching at w;=w;=w,;: (i) degenerate pumps (DP) with
W =m=w, (or 6;=56,=0), and (ii) nondegenerate pumps
(NDP) with w2=2wzd—w1, where wl,w2¢ W, (01‘ 51=—62
with 51 B 52 b 0)

Conditions (i) through (iii) above can be fulfilled for any
given fiber; they determine the pump and central generation
frequencies which lead to the optimum SFWM bandwidth,
for a specific fiber. The condition on the curvature [(iv)
above], on the other hand, helps us to select the fiber core
radius, for a given air-filling fraction (or if our analysis were
applied to standard step-index fiber, it helps to select the core
radius for a given index contrast). In order to analyze the
fulfilment of this condition, it is helpful to define C=|8(1
+8.%)7?, where “ " denotes a derivative with respect to &
evaluated at 6_=0. This quantity represents the curvature of
the phase-matching contour at the origin of the generated
frequencies {4, ,d_} space. It is possible to verify that the
curvature associated with the nontrivial branch, in the low-
power limit, is given by C=|k™®/(12k®)|. Thus, the curva-
ture is eliminated at radii for which k¥ <k®: in general, as
will be discussed below, for each f, one value of r exists such
that K“=0. The role of k¥ is illustrated in Fig. 3 for the
degenerate pumps regime, where we present phase-matching
contours, represented by solid lines, in a generated frequen-
cies (vertical axis) vs pump frequency (horizontal axis) dia-
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gram. Here, we express the generated frequencies as detun-
ings from the pump frequency A=w—w,; the top half of the
diagram corresponds to the signal photon, while the bottom
half corresponds to the idler photon. The three panels show
the phase-matching contour for a PCF with f=0.5, for three
different values of the core radius, for which (i) k¥ <0 (with
r=0.9023 um) in Fig. 3(a), (i) k=0 (with r=0.7059 um)
in Fig. 3(b) and (iii) k>0 (with r=0.5953 um) in Fig.
3(c). Note that in all three cases, conditions (i) through (iii)
from Sec. III are fulfilled. It is clear that in Fig. 3(b), the
phase-matching contour has an essentially vertical character
[due to the fulfilment of condition (iv)], indicating that even
a narrow pump bandwidth is capable of generating remark-
ably broadband photon pairs.

Thus, for a source geometry which satisfies conditions (i)
through (iv) above, the phase-matching contour is a straight
line around the zero dispersion point §,=;=0, which in ad-
dition coincides with the energy conservation locus. For fre-
quency pairs sufficiently removed from J,=8;=0, the phase-
matching contour will depart from a straight line due to
terms k™ with n=5. Therefore, the attainable phase-
matching bandwidth is limited by the magnitude of these
dispersion coefficients. Let us note that a fiber characterized
by a lower air-filling fraction f involves a lower core-
cladding dielectric contrast, and consequently the dispersive
effects due to the waveguide contribution tend to be weak-
ened. Such a weaker dispersion leads to reduced dispersion
coefficients k", which in turn limits the departure from a
straight line of the phase-matching contour. Therefore, lower
values of f permit greater SFWM bandwidths.

The process of SFWM leads to a remarkable symmetry
between the two pumps configurations (DP and NDP) dis-
cussed above. Note that the two-photon state is determined
by the phase-mismatch function Ak, (@) [see Eq. (9)];
thus, if we can show that the DP and NDP scenarios lead to
identical phase mismatch functions, this would imply that the
two-photon states in these two scenarios are themselves
identical. To this end, it is instructive to calculate the phase-
mismatch function difference between these two scenarios,

AKPE () — AKPP

cw,sing cw,sing

(0) =k(w)) +kQLw,;— ;) = 2k(w,,)
= AKNPE (w4 P =0) = 6ky. (14)

cw,sing

As indicated in Eq. (14), the phase-mismatch function dif-
ference between the DP and NDP cases is equal to the NDP
phase mismatch, for vanishing pump power and evaluated at
w=w_;, which is in turn equal to &k, [see Eq. (10)]. Thus,
provided that perfect phase-matching is achieved at degener-
ate signal and idler frequencies coinciding with w,,
Akﬁ?’ 5ng(w) =Ak3{i smg(w), and therefore the JSA functions, as
given by Eq. (5), for these two scenarios are in fact identical.
Note that this symmetry is lost for sufficiently large pump
bandwidths. Note, also, that this symmetry applies to the
JSA, i.e., to the two-photon state, but not to the underlying
phasematching function. In Sec. V we discuss an interference
effect, which arises due to identical outcomes obtained by
two indistinguishable pathways, when pumping with DP and
NDP pumps simultaneously.
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FIG. 4. (Color online) (a) Solid lines: Full width at half maxi-
mum (FWHM) bandwidth in the main emission mode as a function
of r for different values of f. Dotted lines: FWHM bandwidth cal-
culated from the outer slopes of satellite peaks; these lines are
shown interrupted when the emitted spectrum reaches the edge of
the range of validity of the Sellmeier expansion for fused silica. For
each f, the red dot corresponds to the radius for which k=0 is
fulfilled. (b) Zero dispersion frequency vs core radius r, for differ-
ent values of the air-filling fraction f. Note that when conditions (i)
through (iii) of Sec. III are satisfied, the zero dispersion frequency
coincides with the central SFWM emission frequency.

For a given fiber (characterized by the values for r and f),
the singles spectrum |f(w)|? can be computed using Eq. (8),
for a pump frequency such that conditions (i) through (iii)
above are satisfied, in either the DP or NDP regimes. Given
the symmetry discussed above, these two regimes give iden-
tical SFWM joint, as well as singles, spectra. Solid curves in
Fig. 4(a) show the resulting optimum full width at half maxi-
mum singles bandwidth as a function of the core radius,
where each curve is computed for a fixed value of the air-
filling fraction. Here we have assumed a fiber length of L
=25 cm, strictly monochromatic pumps and a vanishingly
low pump peak power (we consider the effect of realistic
pump power levels in the next section). Figure 4(b) shows
the zero dispersion frequency, which if conditions (i) through
(iii) are satisfied corresponds to the central SFWM fre-
quency, plotted vs the core radius for different values of the
air-filling fraction. These plots show that while spectra cen-
tered in the infrared tend to be broader than those centered in
the visible, there is a considerable flexibility for choosing the
central emission frequency while maintaining a large emis-
sion bandwidth (as compared to an approach based on PDC
with x® crystals). The spectra from which the curves in Fig.
4(a) were calculated typically include a main emission mode
involving an essentially flat spectrum and in some cases pairs
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FIG. 5. (Color online) This figure is similar to Fig. 4(a), for the
case f=0.1. Here we have used a larger plotting range to better
represent the branch of the generated bandwidth vs radius curve
corresponding to the satellite peaks. The spectra associated with
points A, B, and C are discussed in Sec. IV.

of peaks around the main emission mode. For solid-line
curves in Fig. 4(a), the valleys between satellite peaks and
the main emission mode do not drop below 0.5 of the maxi-
mum value. For certain radii, however, the spectrum exhibits
pairs of well-defined satellite peaks around the main emis-
sion mode, resulting in voids in the spectrum. The bandwidth
indicated in Fig. 4(a) by dashed-line curves is calculated
from the outermost slopes associated with these satellite
peaks. It is important to point out that in the case of the NDP
regime, these satellite peaks are in fact centered at the pump
frequencies, and are due to trivial phase-matching. Figure 5
shows a curve similar to that in Fig. 4(a), in this case for f
=0.1 with a larger plotting range in order to better represent
the branch associated with satellite peaks. As can be seen,
there are fiber core radii for which there are in fact more than
one pair of satellite peaks. This is clear, for example, for the
core radius labeled as C, for which there are two pairs of
satellite peaks.

In Fig. 4(a), each solid-line curve is interrupted towards
smaller radii, at the radius for which the zero dispersion fre-
quency no longer exists [conditions (i) through (iii) assume
the existence of a zero dispersion frequency]. It is apparent
from the figure that the generation bandwidth tends to be
larger for smaller air-filling fractions. It is also apparent that
for a given air-filling fraction, the attainable bandwidth ex-
hibits a peak near the core radius ry4)-, for which the condi-
tion k4=0 is fulfilled (shown as red dots). Note that the
exact radius yielding the maximum bandwidth is slightly
larger than ry@)_q. This is due to the influence of higher-order
dispersive terms. In particular, it turns out that a small degree
of curvature, with k) # 0, can enhance the attainable band-
width, if ¥ and k‘® have opposite signs. These parameters
do in fact have opposite signs over a small range of radii
larger than rys_,, explaining the shift of the peak from r
=r4)=0-

An interrupted dashed-line curve indicates that the emit-
ted spectrum reaches the edge of the range of validity of the
Sellmeier expansion used to compute dispersion for fused
silica.

It is possible to reinterpret the phase-matching contours in
the low pump peak power limit, of Fig. 3, as nondegenerate
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pump frequencies in the vertical axis and degenerate signal
and idler central frequencies in the horizontal axis. This is
inverted with respect to the original interpretation, i.e., de-
generate pumps in the horizontal axis and nondegenerate sig-
nal and idler in the vertical axis. The NDP pump frequencies
which satisfy conditions (i) through (iii) above can now be
determined by setting the degenerate signal and idler fre-
quency at the zero dispersion frequency (denoted in the fig-
ure by a vertical dashed line), and reading out, on the vertical
axis, the required NDP pump frequencies from the intersec-
tion of this vertical line with the phase-matching contour.
Thus, the example in Fig. 3(a) clearly shows the DP pump
frequency coinciding with w_; and also shows one set of
NDP pump frequencies. Figure 3(b) shows that source de-
signs for which the phase-matching contour curvature ap-
proaches zero (k¥ =0), which yields a large generation
bandwidth in the DP regime, permit an infinite number of
pump frequencies which can function as NDP pump frequen-
cies (throughout the portion of the contour which is essen-
tially vertical). This leads to the remarkable conclusion that
an identical two-photon state is expected for any pair of
pump frequencies among the possibly infinite set comprised
of (i) the DP pump frequency, (ii) possibly one or more dis-
crete NDP frequency pairs, and (iii) possibly a continuum of
NDP pump frequency pairs.

A key consideration in the design of fiber-based two-
photon sources is possible contamination from spontaneous
Raman scattering, which occurs over a bandwidth of
~40 THz to the red from each pump spectral band. Our
treatment in this paper does not take into consideration Ra-
man gain; within the Raman bandwidth, a full analysis must
take into consideration the combined effects of SFWM and
spontaneous Raman scattering and therefore our theory is not
complete [26,27]. However, since here we concentrate on
broadband SFWM, where the generation bandwidth is much
larger than the Raman bandwidth, our theory does ad-
equately describe the overall two-photon state structure. The
need for Raman suppression, in order to ensure high-quality
signal-idler correlations, suggests a useful application for the
symmetry between the DP and NDP regimes. For a configu-
ration with an optimized SFWM bandwidth, we may pump
at a pair of discrete NDP frequencies, which if sufficiently
removed from the main emission mode, guarantees that this
main emission mode is free from spontaneous Raman scat-
tering.

Note that longitudinal fluctuations of the fiber properties
may have an important effect on the properties of emitted
light, particulary on the attainable bandwidth [28]. In prac-
tice, this will set a fabrication tolerance on the amplitude and
characteristic period of the fluctuations.

IV. ULTRABROADBAND TWO-PHOTON STATES:
SPECIFIC EXPERIMENTAL DESIGNS

In this section we present specific designs of fiber-based
ultrabroadband photon-pair sources. As we have noted in the
previous section, a small air-filling fraction tends to enhance
the resulting SFWM generation bandwidth. Thus, for the
specific examples to be considered here, we assume fibers
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FIG. 6. (Color online) Representation of the joint spectral inten-
sity in {8, , 8_} space obtained for a fiber corresponding to point A in
Fig. 5. Here we present a plot of |sinc[ LAk, (w, ;)/2]|* (in shades
of gray), and we also indicate the energy conservation locus as a
vertical yellow line. While (a) corresponds to the DP regime, (b)
corresponds to the NDP regime.

with f=0.1 (which according to Ref. [24] represents the
lower bound for the range of validity of the step-index
effective-medium dispersion model which we have em-
ployed). We have selected three different source designs, in-
volving radii labeled A, B, and C in Fig. 5. For source A, the
core radius is chosen so that the condition k=0 is fulfilled
(corresponding to a vanishing phase-matching contour cur-
vature). For source B, the core radius is chosen so that we
obtain the largest possible flat-spectrum generation band-
width for f=0.1 (as discussed above, this maximum does not
occur at the radius for which k¥=0 due to the effect of
higher-order terms). For source C, we have selected the
smallest core radius for which the two satellite peaks become
well defined, i.e., such that the rate of emission reaches zero
between the main emission band and the satellite peaks. In
what follows we present emission spectra for these three
cases. In all cases we will assume a fiber length of L
=25 cm, a pump peak power of P=5 W, a nonlinear coeffi-
cient of y=70 W-'km™!, and a pump bandwidth of o
=50 MHz, unless stated otherwise.

In Figs. 6 and 7 we present the two-photon state and
singles spectrum obtained for an air-filling fraction f=0.1
and for a core radius of r=ry4_y=1.8162 um (which corre-
sponds to point A in Fig. 5). A number of choices for the
pump frequencies which satisfy conditions (i) through (iii)
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FIG. 7. (Color online) (a) Representation of the joint spectral
intensity in {w,,w;} space, for the same parameters as in Fig. 6.
Note that there are two highly nondegenerate satellite peaks, shown
circled. (b) Singles spectrum corresponding to the joint spectral
intensity in (a).

above exist, and which therefore permit the largest possible
generation bandwidth for the fiber in question: (i) A=A\,
=Ny=27c/w,,=12076 um in the DP regime, (ii) \;
=0.7252 pm, N\,=3.6070 um (one individual set of NDP
frequencies), and (iii) any pair of frequencies symmetrically
displaced from w, within the range 1.1606 um=A\
=<1.2586 um; these constitute a continuum of NDP fre-
quency pairs. It should be stressed that given the symmetry
between the DP and NDP regimes, all of the above choices
of pump frequencies will result in a two-photon state with
the same joint spectrum |F,,,(w,, ®;)|?.

In Fig. 6(a) we present a plot of the phase-matching func-
tion |sinc(LAk,,,/2)|?, in {8,,8.} space, for the DP regime.
We have overlapped a plot of the perfect phase-matching
contour Ak,,(8,,8_)=0 (for graphical clarity we have inter-
rupted this contour towards the narrow outer branches). Note
that the trivial phase-matching branch exhibits a power-
induced splitting into two parallel branches. Figure 6(b)
shows the corresponding plot of the phase-matching function
in {&,, 8_} space, plotted for the NDP regime (where we have
chosen pump frequencies corresponding to the discrete NDP
frequency pair); specifically, we have chosen \,=2m¢/w,
=0.7252 pm and \,=2mc/ w,=3.6070 wm. In both cases we
have indicated with a yellow vertical line the energy conser-
vation locus; ideally, for a large generation bandwidth the
phase-matching contour and the energy conservation locus
should coincide. Remarkably, while the phase-matching
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functions in the DP and NDP regimes are considerably dif-
ferent (as can be appreciated from the plots), the resulting
two photon states are identical as demanded by the symmetry
derived in the last section. Indeed, the portion of the phase-
matching function which coincides with the energy conser-
vation locus may be seen to be identical in these two cases.
Figure 7(a) shows the joint spectral intensity |F,,(w,,;)|?,
plotted as the contour corresponding to 0.5 of the maximum
value (note that the narrow diagonal width should be inter-
preted only schematically; the lines used are much thicker
than the actual spectral width). As expected, from the sym-
metry discussed above, the joint spectral intensity is identical
for the DP and NDP regimes. Note that in Fig. 7(a) there is a
main emission mode centered at the zero dispersion fre-
quency, and there are two satellite peaks, shown circled, in-
volving highly nondegenerate frequency pairs.

The large degree of spectral entanglement evident in Fig.
7(a), could in principle be computed through the Schmidt
number, K. However, because of the very large ratio of the
large to small diagonal widths, it is difficult for the sampling
used to suffice in giving a reliable numerical estimate of K.
Our calculation gives us a lower bound K> 1.7 X 10* (where
K=1 indicates a factorable, or unentangled, state).

Figure 7(b) shows the singles spectrum, calculated
from Eq. (8) (and therefore assuming ideal monochromatic
pumps), which once again is identical for the DP and NDP
regimes. This spectrum exhibits a main emission mode cen-
tered at N ,=2mc/w,;=1.2076 um, with a remarkably large
full width at half maximum (FWHM) bandwidth of
712.2 nm. The singles spectrum also exhibits two satellite
peaks centered at A;=2mc/w;=0.7252 um and A\,
=2mc/ w,=3.6070 um, which in the NDP regime with two
discrete peaks [scenario (ii) above] are centered at the pump
wavelengths. The emission bandwidth calculated from the
outer slopes of these satellite peaks is 2884.8 nm. The frac-
tional generation bandwidth for the main emission mode
Aw/w, where Aw is the FWHM bandwidth and w, is the
central frequency gives a value of 0.546. This large genera-
tion bandwidth leads to a small correlation time, of 7
=3.4 fs, calculated as the width of the signal-idler emission
time difference distribution.

In Fig. 8 we present the singles spectrum obtained for an
air-filling fraction of f=0.1 and a core radius of r
=1.8402 um (corresponding to point B in Fig. 5, which
yields the maximum possible flat-spectrum bandwidth for
this air-filling fraction). As in the previous example, a num-
ber of choices for pump frequencies which satisfy conditions
(i) through (iii) above exist. These include (i) Aj=Nr=Ay
=2mc/ w,,=1.1987 um in the DP regime, two discrete sets
of NDP frequencies, at (ii) A;=0.8683 um, A\,=1.9349 um,
and (iii) A;=0.7306 wm, \,=3.3367 wm, as well as (iv) any
pair of frequencies symmetrically displaced from w,; within
the range 1.1835 um=A=1.2145 pum; these constitute a
continuum of NDP frequency pairs. Pump frequencies for
scenarios (i) and (ii) are indicated in the figure by vertical
dashed lines. Note that the slight departure from a flat central
emission mode is power induced (an essentially flat spectrum
would be recovered for a lower pump peak power). This
source leads to a remarkably large generation bandwidth of
AN=1142.3 nm, including a central mode and two adjacent
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FIG. 8. (Color online) Singles spectrum corresponding to point
B in Fig. 5. The red rectangles represent the ~40 THz spontaneous
Raman scattering bandwidth centered at the inner NDP frequency
pair.

satellite peaks; this corresponds to a fractional bandwidth of
Aw/w,=0.794. Defining the bandwidth according to the
outer slopes of the outermost satellite peaks, the generation
bandwidth becomes 2612.2 nm. Note that if nondegenerate
pump frequencies are made to coincide with the first set of
satellite peaks [scenario (ii) above], then the main emission
mode remains free from spontaneous Raman scattering; in-
deed the red rectangles in the figure indicate the ~40 THz
spontaneous Raman scattering bandwidth. The large band-
width of the main emission mode leads to a short correlation
time of 7=2.5 fs.

In Fig. 9 we present the singles spectrum obtained for an
air-filling fraction of f=0.1 and a core radius of r
=1.8471 um (corresponding to point C in Fig. 5), which
represents the smallest core radius for which the two satellite
peaks become well defined. As in the previous examples, a
number of choices for pump frequencies which satisfy con-
ditions (i) through (iii) above exist. These include (i) A,
=Ny=Ny=2mc/w,;=1.1964 um in the DP regime, two dis-
crete sets of NDP frequencies, at (ii) A\;=0.8347 um, A,
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FIG. 9. (Color online) Singles spectrum corresponding to point
C in Fig. 5. The red rectangles represent the ~40 THz spontaneous
Raman scattering bandwidth centered at the inner NDP frequency
pair.
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=2.1112 pwm and (iii) A\;=0.7347 pwm, A\,=3.2195 wum, as
well as (iv) any pair of frequencies symmetrically displaced
from w_, within the range 1.1821um =<\ =<1.2112 um; these
constitute a continuum of NDP frequency pairs. Pump fre-
quencies for scenarios (i) and (ii) are indicated in the figure
by vertical dashed lines. As in case B, the slight departure
from a flat central emission mode is power induced, and
would be eliminated in the low pump power limit. This
source leads to a generation bandwidth of AN=630.6 nm in
the central emission mode, corresponding to a fractional
bandwidth of Aw/w,=0.495 and to a correlation time of 7
=4.1 fs. Defining the bandwidth according to the outer
slopes of the innermost satellite peaks, the generation band-
width becomes 1330.8 nm. Likewise, defining the bandwidth
according to the outer slopes of the outermost satellite peaks,
the generation bandwidth becomes 2493.6 nm.

V. QUANTUM INTERFERENCE IN SPONTANEOUS
FOUR-WAVE MIXING

In Sec. IIl we concluded that SFWM source designs exist
where the pump frequencies may be chosen from a certain
set, which may be finite or infinite, in such a way that any
choice within this set yields an identical two-photon state.
This set of pump frequencies is composed of all those which
lead to the fulfilment of conditions (i) through (iii) of Sec.
III. It includes one DP frequency, coinciding with the zero
dispersion frequency, and can also include individual pairs of
NDP frequencies, as well as a continuum of NDP frequencies
centered at the zero dispersion frequency. In this section we
explore the effect of pumping simultaneously at the frequen-
cies corresponding to two elements of this set, where coher-
ence between the various frequencies involved is assumed to
exist. In the discussion which follows, we assume that these
two elements correspond to DP and NDP frequencies. Be-
cause a specific photon pair can then be created by any of
two indistinguishable pathways, we expect an interference
effect to occur when we vary the relative phase between
these two sets of pump frequencies. This interference is such
that the two individual pathways can interfere destructively
leading to the suppression of photon pair emission, or they
can interfere constructively. Variation of the relative phase
between the two sets of pump frequencies, then leads to a
sinusoidal modulation of the resulting rate of emission.

In order to analyze this interference effect, we assume a
pump field including three narrow spectral bands (e.g., with
a rectangular shape) centered at each of the DP and NDP
frequencies. It is straightforward to verify that the total peak
power available in each of the DP and NDP regimes should
be identical, so that each pump configuration leads not only
to the same joint spectrum, but also to the same rate of emis-
sion. One way of attaining this condition is if all pump spec-
tral bands gave the same spectral width, where in addition
the DP amplitude is 2 higher than those for the NDP pumps.
Specifically, we assume that the pump spectrum can be writ-
ten as follows:

a(w) = ag[rect(wypp, | ; dw) + \Eeigrect(wDP; dw)
+reCt(wNDPq2;6a))], (15)

where Sw is the bandwidth (assumed to be small) for each of
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the pump spectral components, € is the phase introduced
between the two pump configurations and rect(x; &,) is unity
for —6,/2<x<<6,/2 and zero otherwise. In the monochro-
matic limit where dw— 0, each of the spectral bands may be
represented by a 6 function and the joint spectral amplitude
may be computed analytically from Eq. (2) yielding

F(ws’wi) =N'e" cos (Q)FDP(ws,wi), (16)

in terms of Fpp(w,,w;) which represents the joint spectral
amplitude for either the DP or NDP regimes [which are iden-
tical if conditions (i) through (iii) above are satisfied], and
where N’ represents a normalization constant. In Eq. (16) we
have omitted a number of terms which are negligible, within
the spectral range of interest, for a sufficient spectral separa-
tion between the DP and NDP spectral components. Note
that the nonlinear nature of the photon pair generation pro-
cess implies that the period associated with the interference
curve is . Note also that for a sufficient departure from
monochromatic pumps in a realistic experimental situation,
the joint spectral amplitude may be computed by numerical
integration of Eq. (2). We have found that for pump band-
widths up to ~0.7 nm, Eq. (16) may be used.

As an illustration, we will consider a specific example
based on a photonic crystal fiber with core radius r
=0.8658 um and air-filling fraction f=0.4. This fiber has a
zero dispersion frequency such that N ,=2mc/w,
=0.8089 um. Conditions (i) through (iii) from Sec. III are
fulfilled for the DP pump frequency with App=2mc/wpp
=0.8089 um as well as for one NDP frequency pair with
Ayppi=2mc/ wypp1=0.7904 um and Nyppr=27c/ wypp,
=0.8283 wm. We have designed the source so that the three
frequencies, which must be mutually coherent, could be
taken from the broad spectrum of a femtosecond-duration
pulse train, e.g., from a Ti:sapphire oscillator. Figure 10(a)
shows the singles spectrum, computed numerically from Eq.
(2) assuming a pump spectral amplitude of the form shown
in Eq. (15), for a number of different phase values . Here
we have assumed a peak pump power of P=5 W and like-
wise we have assumed that the three pump spectral bands
have the same spectral width (equal to AN=0.5 nm) and
where the amplitude of the central one is higher by a factor
of \2, compared to the other two. In Fig. 10(a), the DP and
two NDP spectral components are indicated by vertical
dashed lines. It is clear from the figure that as @ is increased
from O to /2, the height of the spectrum is reduced until
emission is suppressed at @=7/2. Figure 10(b) shows the
total emitted flux (given as the integrated spectral flux) as a
function of €. This plot explicitly shows the expected sinu-
soidal oscillations in the emitted flux.

VI. CONCLUSIONS

We have analyzed the spectral properties of photon pairs
generated by the process of spontaneous four-wave mixing in
single-mode fibers and for narrow-band pumps. Exploiting
this analysis, we have derived conditions under which ultra-
broadband photon pair generation with quasimonochromatic
pumps is possible. The resulting two-photon states are highly
entangled as quantified by the Schmidt number and exhibit a
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FIG. 10. (Color online) (a) Singles spectrum resulting for a fiber
with r=0.8658 um and f=0.4, pumped by three narrow spectral
bands centered at the frequencies corresponding to the DP and NDP
regimes. The curves shown were computed for different phase dif-
ferences (shown in black boxes) between the two pump configura-
tions. (b) Integrated spectra, proportional to the total emitted flux,
as a function of the phase difference between the two pump
configurations.

particularly short correlation time. We have found that, for a
given fiber, the attainable bandwidth is optimized if perfect
phase-matching is attained for signal and idler frequencies
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coinciding with the zero dispersion frequency. It is possible
to design a photon pair source that satisfies this requirement
which is based on degenerate, or on nondegenerate pumps.
These two regimes, referred to as DP and NDP in the paper,
lead to identical resulting two-photon states, revealing a re-
markable symmetry in the process of SFWM. We have
shown that this symmetry leads to a quantum interference
effect when the fiber is pumped, for example, simultaneously
by the pump frequencies corresponding to the DP and NDP
regimes. This symmetry also permits, in the NDP regime, the
generation of ultrabroadband photon pairs without contami-
nation due to spontaneous Raman scattering; note that this
represents a key concern in the design of fiber-based photon-
pair sources. Although our theory can be applied to any fiber,
we have focused our discussion on the use of photonic crys-
tal fibers, described through a step index, effective medium
dispersion model. We have shown that for a given air-filling
fraction in the cladding, the SFWM bandwidth is optimized
for core radii close to that which leads to the fulfilment of the
condition k¥=0. Likewise, we have shown numerically that
smaller air-filling fractions lead to greater SFWM band-
widths; this is due to a weakening of waveguide dispersion
resulting from a lower nucleus-cladding index contrast. We
have presented specific experimental designs, in some cases
leading to over 1000 nm of emitted SFWM bandwidth. We
expect that these results will be useful in the design of pho-
ton pair sources to be used in the exploration of high-
dimensional continuous-variable entanglement.
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