
10.1098/rsta.2003.1216

Managing photons for quantum
information processing

By Alfred B. U’R e n, E r an Mukamel,
Konrad Banaszek a n d Ian A. Walmsley

Clarendon Laboratory, University of Oxford, Oxford OX1 3PU, UK

Published online 2 June 2003

We study distinguishing information in the context of photonic quantum interference
tailored for practical implementations of quantum information processing schemes. In
particular, we consider the character of single-photon states optimized for multiple-
source interference experiments and for experiments relying on Bell-state measure-
ment and arrive at speci­ c design criteria for photons produced by parametric down-
conversion. Such states can be realistically implemented with available technology.
We describe a novel method for characterizing the mode structure of single photons,
and demonstrate it in the context of coherent light.
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1. Introduction

Among physical systems that can be used for practical realizations of novel informa-
tion processing schemes based on intrinsically quantum phenomena, photons are the
primary candidates for constituting carriers of quantum information. Applications
of photons as `®ying qubits’ include quantum cryptography, communication between
distributed computational nodes in quantum networks, as well as elementary building
blocks for registers in all-optical quantum computation.

Using single photons as carriers of qubits in quantum information processing
requires, in most cases, that they be made to interact in a controlled coherent way.
This is usually facilitated by modal interference which is, however, critically sensitive
to the spatio-temporal structure of the interfering photons. Great care must therefore
be exercised in making sure that no distinguishing information is contained in the
interfering photons that would allow one to trace their origin. A common approach to
cope with this problem is the implementation of strong spatial and spectral ­ ltering.
Such a method, however, reduces the available photon sample, and also contributes
deleteriously to the overall detection e¯ ciency. Overcoming the limitations of this
approach is currently one of the main challenges in the further development of quan-
tum information processing applications in the photonic domain.

The generation of entanglement relies on the coherent addition of two or
more quantum amplitudes resulting from interfering pathways. This interference
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is degraded and indeed can be destroyed by distinguishing information even if no
explicit use is made of this information. It is therefore crucial to develop the abil-
ity to manage distinguishing information in all photonic degrees of freedom. The
purpose of this paper is to explore methods for engineering the modal structure of
photon sources. The physical process that we will consider is spontaneous parametric
down-conversion (PDC), which has been the primary source of non-classical optical
radiation in recent quantum information experiments. Our goal is to develop photon
sources that produce photons in well-speci­ ed single spatio-temporal modes such
that the resulting engineered photons have identical mode structures, with, in prin-
ciple, no distinguishing information residing in any degree of freedom, thus ensuring
high visibility interference.

2. Criteria for the design of photon states

(a) Design criteria for photon states to be used in multiple-crystal interferometry

A basic requirement necessary for the successful implementation of photon-based
quantum computation is the availability of multiple-photon entangled states. In this
section we explore the experimental challenges likely to be faced when synthesizing
such a multiple-photon state employing a number of two-photon sources pumped
synchronously with an ultrashort pulsed pump. Through such an approach, distin-
guishing information implicit in timing can be limited to the pulsed-pump temporal
duration. Though it is rather di¯ cult to view such an approach based on PDC as
a practical route towards fully scalable all-optical quantum computation, it can be
reasonably expected that this process can be applied in small-scale quantum circuits
used for example in quantum communications.

A two-photon PDC state can in general be expressed as a weighted sum of creation
operators acting on a vacuum,
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where the function S(! s ; k?
s ; · s ; !i; k?

i ; · i) represents the joint two-photon amplitude
in terms of the photon degrees of freedom: frequency, transverse momentum (with
respect to the pump ­ eld) and polarization. The two-photon probability amplitude
depends on the form of the pump ­ eld and on the so-called phase-matching function,
de­ ned by the optical properties of the crystal. Throughout the remaining discussion,
it is assumed that the signal and idler directions of propagation are ­ xed, e.g. with
pinholes.

What are the requirements on the spectral state for a photon pair to exhibit
high-visibility interference? The answer depends on which experiment we wish to
perform. For the classical Hong{Ou{Mandel interferometer (HOMI) (Hong et al .
1987), it turns out that the fourth-order interference visibility depends only on the
degree to which the joint spectral amplitude is symmetric (here symmetry is de­ ned
for our purposes as S(! s ; !i) = S(!i; ! s )).

As an example of a multi-crystal experiment, let us now discuss a two-PDC crystal
apparatus in an event-ready HOMI-like arrangement, as shown in ­ gure 1a. The
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Figure 1. (a) Two-PDC crystal HOMI arrangement. Interference visibility is reduced if the pho-
ton pairs are spectrally correlated. (b) Trade-o® between interference visibility and count rate.

idler photon from the ­ rst crystal is interfered with the signal photon from the
second crystal, while the remaining two channels are used as triggers. The experiment
consists of monitoring quadruple coincidences on D1 through D4, while scanning the
delay ½ . If both PDC crystals are identical and described by a joint spectral amplitude
function f(! s ; !i), the four-fold coincidence rate Rc( ½ ) may be shown to be (Grice
1997)

Rc( ½ ) /
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The visibility becomes unity if at ½ = 0 the coincidence rate vanishes; we can see
from equation (2.2) that a su¯ cient condition for this to occur is given by

f(!1; !2)f(!3; !4) = f(!1; !4)f(!3; !2): (2.3)

Unlike in the (one-crystal) HOMI, symmetry in the function f(! s ; !i) does not
help in ful­ lling this condition. It may be seen, however, that such a condition is met
if functions p(!) and q(!) exist such that f(! s ; !i) = p(! s )q(!i). The latter is true
if the photon pair is spectrally uncorrelated.

How can we obtain such a factorizable state? Perhaps the simplest way is by
making use of spectral and/or spatial ­ ltering. A recent experiment by Lvovsky et
al . (2001) demonstrates the way in which distinguishing information can be thus
eliminated, but at the cost of extremely low resultant production rates. Consider
a simpli­ ed type-I source where the joint spectral amplitude is approximated by
a Gaussian (i.e. we neglect the secondary peaks of the sinc function and neglect
dispersive e¬ects) and is spectrally ­ ltered,

f( ¸ s ; ¸ i) = A exp

·
¡ 2( ¸ 2

s + ¸ 2
i )

µ
1

¼ 2
F

+
1

¼ 2

¶
¡ 2 ¸ s ¸ i

¼ 2

¸
; (2.4)

where A is a normalization constant, ¸ j = !j ¡ !0, ¼ F is the width of the Gaussian
spectral ­ lter and ¼ is the resultant width of the product of the pump-envelope
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and phase-matching functions. Substituting equation (2.4) into equation (2.2) and
integrating yields

Rc( ½ ) / R0

·
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which represents an interference dip with visibility
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and a normalized count rate
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2 ¼ 2

F

2 ¼ 2
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; (2.7)

which has a value between 0 and 1. For a ­ xed value of ¼ , the ­ ltering strength
determines the value of R0, which vanishes for strong ­ ltering ( ¼ F ½ ¼ ) and gives
unity in the limit of no ­ ltering ( ¼ F ¾ ¼ ).

As expected, in the strong-­ ltering regime (i.e. ¼ F ½ ¼ ), equation (2.6) predicts
unit visibility. Filtering, however, has the unfortunate consequence that the count
rate is prohibitively reduced by rejecting most photon pairs. This is illustrated in
­ gure 1b, which shows the relationship between the visibility (see equation (2.6)) in
the two-crystal HOMI and the expected count rate (see equation (2.7)) with each
point along the curve corresponding to a di¬erent ­ ltering strength.

(b) Design criteria for polarization-entangled states

The polarization of light ­ elds can be readily controlled using, for example, wave
plates and polarizers. This is in marked contrast with the case of other photonic
degrees of freedom, such as frequency, for which it is rather more di¯ cult to achieve
a comparable level of control. It is therefore not surprising that most recent experi-
ments exploring issues of entanglement have relied on polarization entanglement. A
number of reliable methods for generating polarization-entangled photon pairs have
been proposed and implemented (e.g. Kwiat et al . 1995, 1999).

As in any interference experiment, a pre-condition for high interference visibility is
that distinguishing information between the interfering pathways is eliminated, even
in those degrees of freedom which are not of primary interest for the experiment
in question. This applies to the generation of polarization-entangled photon pairs,
where, even though polarization is the degree of freedom of interest, it is crucial to
engineer the spectral properties of the photon pairs appropriately to eliminate any
spectral distinguishing information.

We will illustrate the importance of this point by studying the Braunstein{Mann
Bell-state analyser (Braunstein & Mann 1995). The apparatus is displayed in ­ g-
ure 2a, where `BS’ is a 50:50 beam-splitter and `PBS1’ and `PBS2’ are polarizing
beam-splitters. This experiment serves as a building block for a large class of exper-
iments relying on Bell-state measurement, such as entanglement swapping and tele-
portation. Employing such an analyser, the experimenter can make inferences about
the state of the incoming photon pair from the ­ ring pattern of the four detectors.
Likewise, knowing the state of the incoming photon pair, inferences can be made
about what the ­ ring pattern will be. For instance, assuming that there is zero delay
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Figure 2. (a) Braunstein{Mann Bell-state analyser; (b) polarization-correlation experiment;
and (c) graphical representation of the condition for optimal performance.

between the two photons ( ½ = 0), if ¬ and ® or ­ and ¯ ­ re we then know with cer-
tainty that the incoming state is the singlet state jÁ(¡)iab = 2¡1=2(jHV iab ¡ jV Hiab).
Likewise, if the incoming state is jÁ(+ )iab = 2¡1=2(jHV iab + jV Hiab), we can infer
with certainty that either ¬ and ­ or ¯ and ® will ­ re. Considering the fact that
the Bell-state analyser relies on quantum interference, we would expect that, if the
two-photon state used were to exhibit spectral distinguishing information, the corre-
lation between the incoming two-photon state and the ­ ring pattern would no longer
be perfect. We will compare the behaviour of the Bell-state analyser with that of the
apparatus shown in ­ gure 2b, which measures the polarization correlations present
in a polarization-entangled two-photon state.

We begin our analysis by considering a maximally entangled polarization Bell state
with the spectral component of the state included in the explicit form

jÁ§i =
1p
2
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H(!2)]jvaci;

(2.8)
where a and b refer to two distinct spatial modes, where `H’ and `V’ refer to horizontal
and vertical polarization and where the functions f(!1; !2) and g(!1; !2) are each
normalized such that the integral over both arguments of the modulus squared of
the function is unity. In order to study the performance of the Bell-state analyser,
we detect the whole output from each port of the beam-splitter in ­ gure 2a, i.e. we
remove the two polarizing beam-splitters and place a detector in each output mode.
If the Bell-state analyser operates ideally, as described above, the singlet jÁ(¡)i state
yields a unit coincidence rate, while the jÁ(+ )i yields a zero coincidence rate. On the
other hand, by calculating the coincidence rate assuming a (non-ideal) incoming state
given as in equation (2.8), we obtain the result

R§
c ( ½ ) =

1

4

Z 1

0

Z 1

0

d!1 d!2 jf(!1; !2) ¨ ei(!1¡!2) ½ g(!2; !1)j2; (2.9)

where the `§’ on the left-hand side refers to a Á(+ )=Á(¡) incoming state. Because the
integrand in equation (2.9) is non-negative, the necessary and su¯ cient condition to
obtain R +

c = 0 and R¡
c = 1 at ½ = 0 (i.e. the desired behaviour) is given by

g(!1; !2) = f(!2; !1): (2.10)
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Figure 3. The two Feynman alternatives shown in (a) and (b) are
indistinguishable from each other.

Figure 2c depicts the condition in equation (2.10) graphically: the two spectral
amplitude functions must be the specular image of each other across the line !1 =
!2. In order to gain a physical understanding of this condition we consider the
Feynman alternatives leading to obtaining a coincidence event. Suppose that the
photon pair is described by the ­ rst component of the Bell state, i.e. the amplitude
containing f(!1; !2) and that the two photons are re®ected at the beam splitter.
Such an event (left-hand diagram in ­ gure 3a) is indistinguishable (meaning it has an
identical detection pattern) from the event where the photon pair is described by the
second amplitude with reversed frequency arguments, i.e. g(!2; !1), and where the
two photons are transmitted at the beam splitter (right-hand diagram in ­ gure 3a).
For this system, there is a second set of two pathways, as shown in ­ gure 3b, which
may lead to a coincidence. For unit interference visibility to occur, the two pathways
in each set must be indistinguishable from each other. Figure 3 shows schematically
that, for both sets of pathways, indistinguishability is guaranteed (for ½ = 0) if the
condition in equation (2.10) is ful­ lled.

Consider now the apparatus in ­ gure 2b, which has been used in several recent
experiments to test whether a photon pair is polarization entangled. Assuming that
the incoming state is given as in equation (2.8), the coincidence rate as a function of
the polarization rotation angles in each arm, ³ a and ³ b, may be shown to be

R§
c ( ³ a; ³ b) =

Z 1

0

Z 1

0

d!1 d!2 j cos ³ a sin ³ bf(!1; !2) § sin ³ a cos ³ b g(!1; !2)j2:

(2.11)
The resulting necessary and su¯ cient condition to obtain unit visibility fringes (in

which case the coincidence rate reduces to R§
c = sin2( ³ a § ³ b)) is

f(!1; !2) = g(!1; !2): (2.12)

Note that this condition, which says that the two amplitudes should be identical,
is di¬erent from that derived for the Bell-state analyser experiment (see equation
(2.10)). The fact that these conditions di¬er means that, depending on the kind
of experiment to be performed, the polarization-entangled state to be used should
entail di¬erently engineered spectral properties.

Is it possible to ful­ l both conditions simultaneously? Together, the two con-
ditions reduce to the requirement that the quantum amplitude be symmetric,
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i.e. f(!1; !2) = f(!2; !1). By generating a polarization-entangled state using two
type-I cascaded crystals (Kwiat et al . 1999), the two amplitudes f(!1; !2) and
g(!1; !2) are each symmetric and can be made to be identical, even in the case where
a pulsed pump is used, if the pump is pre-compensated, as described by Nambu et
al . (2002). Therefore, this method for generating polarization-entangled states has
the important property that it can be made to ful­ l both conditions, so that the
same source may be used successfully (without the need for spectral ­ ltering) for
the polarization-correlation experiment (­ gure 2a) and for the Bell-state-analyser
experiment (­ gure 2b).

Polarization-entangled photon pairs may also be synthesized using the modes
de­ ned by the intersections of the `e’-ray and `o’-ray cones in type-II PDC (Kwiat et
al . 1995). It may be shown that this scheme produces a polarization-entangled state
such that the condition in equation (2.10) is ful­ lled. This means that such a state
is well-suited for Bell-state-measurement experiments (e.g. the Bell-state analyser
in ­ gure 2a), while it is not well suited for the polarization-correlation experiment
(­ gure 2b). In a recent experiment making use of this type-II source (Kim et al . 2003;
Kim & Grice 2002), one of the two spatial modes is subjected to a 90¯ polarization
rotation prior to be being combined at a beam-splitter with the other mode. The
authors show that the two output modes from the beam-splitter are in a polarization-
entangled state which yields near-unit visibility, without resorting to spectral ­ lter-
ing, in a polarization-correlation experiment such as the one shown in ­ gure 2b. We
can understand the results of Kim et al . (2003) in terms of the conditions in equa-
tions (2.10) and (2.12). The half-wave plate and beam-splitter accomplish turning a
state obeying f(!1; !2) = g(!2; !1) into a state obeying f(!1; !2) = g(!1; !2). The
resulting state, however, is no longer well suited for Bell-measurement experiments.

It would therefore appear that it is possible to optimize a polarization-entangled
photon pair generated via type-II PDC for one of the two types of experiments
discussed above, but not for both simultaneously. There are in fact two ways in
which the amplitudes may be made identical and symmetric, and therefore be made
to ful­ l both conditions. The ­ rst is by pumping the type-II source with a continuous-
wave (CW) pump: in the limit of zero pump bandwidth, the pump-envelope function,
which is always symmetric, dominates over the phase-matching function to determine
the overall spectral amplitude. It is also possible to symmetrize the amplitudes by
placing a (symmetric) interference ­ lter with a narrow-enough bandwidth and an
appropriately chosen central bandpass frequency at each of the two spatial modes|
the latter, of course, at the cost of a sharp reduction in the production rate of photon
pairs. We therefore conclude that an ultrafast-pumped spectrally un­ ltered type-II
polarization-entangled source cannot be simultaneously optimized for both kinds of
experiments, in contrast with a cascaded type-I two-crystal source.

3. Characterization of spatial coherence

In addition to the spectral degree of freedom discussed in the preceding section, the
spatial structure of the photons, characterized by the distribution of their trans-
verse momenta, plays an equally important role in multi-photon interference. In
most experiments on photonic quantum information processing, photons generated
in down-conversion are coupled into single-mode ­ bres. This enables their transmis-
sion over relatively long distances without signi­ cant losses, and also greatly sim-
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pli­ es alignment of interferometric set-ups used for detection, such as the Bell-state
analyser proposed in Braunstein & Mann (1995) and used in a number of experi-
ments on teleportation and entanglement swapping. In order to ensure good coupling
e¯ ciency, the down-converted photons should be generated optimally in single spa-
tial modes that could be transformed using passive optics into the ­ bre eigenmodes.
This brings us to the issue of characterizing transverse spatial coherence of single-
photon signals, which would be a useful diagnostic technique in quantum interference
experiments with down-converted photons.

Determination of the spatial coherence of optical beams has been a subject of
research in the past, and a number of practical schemes have been proposed (Brenner
& Lohmann 1982; Iaconis & Walmsley 1996; Wax & Thomas 1996; Dorrer & Walm-
sley 2002). Most of them, however, are based on array detection, which is not easily
implementable for single-photon signals. Of course, an array detector can in principle
always be replaced with a single scanning detector, but this approach results in a loss
of signal photons and therefore it lowers the signal-to-noise ratio signi­ cantly. We
have recently demonstrated a novel technique for measuring spatial coherence, which
uses a single area-integrating detector collecting the output light. This improves the
signal-to-noise ratio, similarly to the case of Fourier transform spectroscopy, which is
bene­ cial in regimes when array detectors are not available. A natural representation
for spatial coherence that appears in this method is the Wigner distribution function
(Bastiaans 1978).

The basic idea of the method is to measure interference between two replicas
of the input wavefront that are displaced in the phase space and then mutually
rotated by 180¯. The phase-space displacement can easily be realized for the spatial
degree of freedom by a simple steering of the beam, and the rotation is implemented
using re®ections. We note that a similar idea underlies a previous measurement of
the Wigner function for the quadrature degree of freedom of a single light mode
(Banaszek & W´odkiewicz 1996).

The complete set-up built to measure the Wigner distribution function is depicted
in ­ gure 4. For simplicity, we consider here only a single transverse degree of freedom
in the plane of the ­ gure; the two-dimensional generalization is straightforward. The
input beam is steered using the mirror M1 into a three-mirror Sagnac interferometer.
The displacement and the tilt of the mirror transform the input ­ eld according to

E( ¹ ) ! eik¹ E( ¹ + x); (3.1)

and thus control the point (x; k) at which the Wigner function is measured. The
50:50 beam splitter BS generates a pair of replicas of the displaced and tilted input
beam travelling in the opposite directions. The interferometer contains a Dove prism
whose base forms 45¯ with the plane of the interferometer. Transmission through the
Dove prism rotates each of the counterpropagating beams by 90¯, which adds up to
the 180¯ relative rotation required to measure the Wigner function. The operation
of the set-up can be most easily understood by analysing propagation of the repli-
cas of an exemplary image through the interferometer, as shown in ­ gure 4b. The
counterpropagating replicas of the input ­ eld are recombined at the output port of
the interferometer, and the emerging beam is focused with the help of a lens on an
area-integrating detector.

The intensity recorded by the detector can be decomposed into a sum of three
terms. Two of them correspond to the detection of each of the replicas separately,
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Figure 4. (a) Experimental set-up for measuring the spatial Wigner distribution function using
an area-integrating detector. (b) Schematic of transformations of the wavefront propagating
through the set-up.

and they remain constant as long as the aperture of the interferometer does not
clip o¬ any of the input ­ eld. The third term, I12, originating from the interference
between the counterpropagating replicas is proportional to

I12 /
Z

d ¹ [e¡ik¹ E( ¡ ¹ + x)] ¤ eik¹ E( ¹ + x); (3.2)

and it is straightforward to verify that the right-hand side expression is the de­ ni-
tion of the Wigner function for the point (x; k). The complete Wigner function can
be therefore scanned by measuring the detector photocurrent as a function of the
position and the tilt of the steering mirror, and subtracting the constant pedestal.
In ­ gure 5 we depict exemplary results, obtained for a He{Ne laser beam ­ ltered
through a single-mode ­ bre and re®ected from the front and the back surfaces of
a tilted glass wedge. The measured Wigner distribution function shows two slightly
converging Gaussian beams with di¬erent transverse wave vectors, where the oscillat-
ing pattern located between the Gaussians is a signature of their mutual coherence.
An additional feature is the presence of faint ripples on one of the Gaussian peaks,
at twice the spatial frequency of the fringe pattern at the centre of the distribution.
These ripples can be attributed to interference with a third, much weaker, beam
generated by a secondary re®ection from the glass wedge. Obviously, the same set-
up can be used to characterize transverse spatial coherence of single-photon wave
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Figure 5. (a) Surface and (b) contour plots of an experimentally determined Wigner
function for a beam obtained by a double re° ection from a glass wedge.

packets if the output detector is replaced with an avalanche photodiode operated in
the Geiger mode.

4. Engineering sources without spectral correlations

Our approach is to investigate ways to engineer the state at the source in order to
obtain a factorizable state, thus eliminating the need for ­ ltering. One such approach
is described in Grice et al . (2001), where it is shown that, for degenerate collinear
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type-II phase matching, and for an appropriate choice of material, central PDC wave-
length, crystal length and pump bandwidth, it is indeed possible to obtain such a
spectrally uncorrelated state. Unfortunately, this approach works at longer wave-
lengths (greater than 1 mm), where single-photon detectors are not technologically
well developed.

Here we present a novel method for generating spectrally uncorrelated pairs mak-
ing use of non-collinear, degenerate type-I PDC in bulk crystals and which exploits
the transverse momentum of the photons. This approach requires the ability to spec-
ify the crystal length and the beam diameter at the beam waist (i.e. the focusing
strength) accurately and requires the spatial modes exiting the crystal to be accu-
rately de­ ned, for example with pinholes or ­ bres. An additional requirement is an
ultrafast pulsed pump. Figure 6 outlines the experimental set-up. This method can
be made to work at any PDC central wavelength where phase matching is possible, in
particular at those wavelengths where silicon-based single-photon counting modules
work e¯ ciently.

We begin by extending the phase-matching function to the case where a Gaussian
beam, rather than a plane wave, is used as the pump ­ eld. In this case the electric
­ eld amplitude is given by

¬ (x; y; z; k) =
1

1 + (iz)=(kw2
0)

exp

µ
¡ x2 + y2

w2
0(1 + 2iz=(kw2

0))

¶
eikz; (4.1)

where w0 is the beam diameter at the beam waist. Following the procedure sketched
out in Grice & Walmsley (1997), for the phase-matching function we obtain

¿ (¢kz ; ¢k?) / exp

µ
¡ (¢k?)2w2

0

4

¶
sinc

·µ
(¢k?)2

4k
¡ ¢kz

2

¶
L

¸
; (4.2)

where ¢k? refers to the transverse momentum along the (x; z)-plane (see ­ gure 6),
so it is a scalar quantity. By making the approximation sinc(x) º exp( ¡ ® x2) (with
® = 0:193 : : : ) and the further approximation w0=L ¾ p

® sin2 ³ , where ³ is the
propagation angle (which sets an upper limit on the focusing strength), the trans-
verse momentum and longitudinal momentum contributions can be factorized as
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¿ (¢kz ; ¢k?) / ¿ z(¢kz) ¿ ?(¢k?), where

¿ z(¢kz) = exp( ¡ 1
4
® ¢k2

zL2); (4.3)

¿ ?(¢k?) = exp( ¡ 1
4
(¢k?)2w2

0): (4.4)

The joint spectral amplitude can now be written as

S(! s ; !i) = ¬ (! s + !i) ¿ z(¢kz) ¿ ?(¢k?);

where ¬ (! s + !i) is the pump-envelope function.
Let us restrict our attention to the case where the photons are emitted along the

(x; z)-plane (see ­ gure 6), so that the direction of propagation of a given photon can
be described with the polar angle ³ (and having zero azimuthal angle ¿ = 0). We
assume that the pump propagates such that ³ p = 0, in which case conservation of
transverse momentum dictates that ³ s = ¡ ³ i = ³ . Performing a Taylor expansion
and neglecting second- and higher-order terms, the longitudinal and transverse phase
mismatch are then given by

¢kz = ¢k(0)
z + (k0

p ¡ k0 cos ³ )( ¸ s + ¸ i); (4.5)

¢k? = ¡ k0 sin ³ ( ¸ s ¡ ¸ i); (4.6)

where ¸ j = !j ¡ !0 with j = s; i. All wavevector amplitudes and their derivatives are
evaluated at !0 (or 2!0 in the case of k p and k0

p ). ¢k
(0)
z = k p ¡ 2k cos ³ represents

a constant term which must vanish to ensure phase matching. The central idea of
this approach is to exploit the fact that (as expressed in equations (4.5) and (4.6)),
whereas the longitudinal phase mismatch depends on frequency sum ¸ s + ¸ i, the
transverse phase mismatch depends on the frequency di¬erence ¸ s ¡ ¸ i. This means
that, while the contours of the longitudinal phase-matching function ¿ z(¢kz) have
negative unit slope, those of the transverse phase-matching function ¿ ?(¢k?) have
positive unit slope. Therefore, through an appropriate choice of the widths of the two
functions (proportional to L¡1 and w¡1

0 , respectively), the overall phase-matching
function can be made factorizable. The physical reason behind the positive slope of
the transverse phase-matching function is that transverse momentum conservation
leads to the signal and idler photons propagating on opposite sides of the pump,
i.e. ³ s = ¡ ³ i.

When substituting equation (4.5) into equation (4.3) and equation (4.6) into
equation (4.4), and multiplying the two resulting functions, there is a cross-term
proportional to ¸ s ¸ i in the exponential argument which is responsible for the non-
factorizability of the phase-matching function. Our approach is to let this term van-
ish, thus imposing a constraint on the crystal length L and the beam diameter at the
beam waist, w0. This constraint tells the experimenter, for a given crystal length,
the required focusing strength

w0

L
=

p
® (k0

p ¡ k0 cos ³ )

k0 sin ³
: (4.7)

Note that there is a threshold bandwidth of the pump envelope, which must be
exceeded for the spectral uncorrelation of the state not to be destroyed by the strict
spectral anti-correlation imposed by a narrow (or CW) pump,

¼ p >

p
2

® L(k0
p ¡ k0 cos ³ )

; (4.8)
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Figure 7. An uncorrelated two-photon state can be synthesized by exploiting transverse momen-
tum in the crystal. Shown here is the case of a type-I BBO crystal pumped at 400 nm with
output modes at §3¯. (a) Longitudinal phase-matching function ( ¿ z (¢ kz )); (b) transverse
phase-matching function ( ¿ ? (¢ k ? )); (c) pump-envelope function with an FWHM bandwidth of
10 nm ( ¬ (! s + !i)); (d) product of the three previous functions, or the joint spectral amplitude.

where ¼ p refers to the pump bandwidth de­ ned in x 2. Let us look at a speci­ c exam-
ple involving a 1000 mm long type-I BBO crystal with a cut angle of ³ PM = 30:32¯.
When pumping such a crystal with an ultrafast pulsed pump centred at ¶ p = 0:4 mm,
degenerate non-collinear PDC is phase matched at propagation angles (within the
crystal) of ³ s = 3¯ and ³ i = ¡ 3¯. The condition in equation (4.7) gives a beam diam-
eter of w0 = 287 mm. Note that with w0=L = 0:287 and ³ = 3¯ we are in a regime
where the approximation w0=L ¾ p

® sin2 ³ is valid. Figure 7 shows graphically the
interplay of the longitudinal and transverse phase-matching functions which com-
bine to yield an uncorrelated state. Note that the down-converted photons are in
this example emitted with a central wavelength of ¶ = 0:8 mm so that they can be
conveniently detected with silicon-based detectors.

5. Summary

We have shown that it is crucial for the successful implementation of quantum infor-
mation processing schemes in the photonic domain to specify the properties of the
photons in all degrees of freedom, including those which are not of primary inter-
est to the experiment in question. We have reported techniques for measuring the
spatial properties and for engineering the spectral degree of freedom in photon pairs
generated by the process of parametric down-conversion.
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